• Title/Summary/Keyword: Multimedia Engineering

Search Result 4,770, Processing Time 0.031 seconds

GPR Exploration of Non-metallic Water Pipes Linked with Network RTK (네트워크 RTK와 연계한 비금속 상수관의 GPR 탐사)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.296-301
    • /
    • 2021
  • GPR is used for non-destructive investigations, ground investigations, and underground facilities exploration at construction sites. In this study, the applicability to GPR exploration of water pipes linked to Network RTK was presented. Data on the water supply pipes in the study site were acquired using GPR, and the location and depth of buried water pipes could be measured. The accuracy was evaluated from the GNSS observation performance and showed a deviation of -0.16m ~ 0.15m. This satisfied the equipment performance of the public survey work regulation, suggesting that the exploration of water pipes using GPR is possible. Because GPR does not require grounding installation, as in conventional metal pipe detectors, it will increase the efficiency of work for underground facility exploration. Exploration using GPR can acquire the location and depth of metallic and non-metallic underground facilities, so it can be utilized in the construction of a GIS system. If a comparison of the exploration characteristics is carried out, it will be possible to present various uses of underground facility exploration using GPR.

Oil Storage Tank Inspection using 3D Laser Scanner (3D 레이저스캐너를 활용한 유류 저장탱크의 검사)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.867-872
    • /
    • 2020
  • Oil storage tanks are a major structure in chemical industrial complexes. Damage to the structure due to natural disasters or poor management can cause additional damage, such as leakage of chemicals, fire, and explosion, so it is essential to understand the deformation. In this study, data on oil storage tanks were acquired using a 3D laser scanner, and various analyzes were performed for storage tank management by comparing them with design data. Modeling of the oil storage tank was performed using the data and design drawings acquired by a 3D laser scanner. An inspection of the oil storage tank was effectively performed by overlapping. In addition, cross-sectional and exploded views of the deformation were produced to generate visible data on the deformation of the facility, and it was suggested that the oil storage tank had a maximum deformation of -7.16mm through quantitative analysis. Data that can be used for additional work was obtained by producing drawings to be precisely inspected for areas with large deformation. In the future, an inspection of oil storage tanks using 3D laser scanners is quantitative and visible data on oil storage tank deformation. This will greatly improve the efficiency of facility management by rebuilding it.

Applicability Evaluation of Mobile Mapping System for Road Construction Surveying (도로 시공측량을 위한 모바일맵핑시스템의 적용성 평가)

  • Park, Joon Kyu;Lee, Keun Wang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.169-175
    • /
    • 2022
  • Korea's construction industry has a shortage and aging of construction manpower, low productivity compared to other industries, and a high rate of industrial accidents. The Ministry of Land, Infrastructure and Transport is preparing for the 4th industrial revolution and is expanding investment in construction automation and innovative growth engines to improve productivity in the construction industry. In order for new technologies to be utilized in the road construction field, the accuracy of the technologies and the applicability of each type of work must be evaluated. In this study, the accuracy of the mobile mapping system was tried to verify based on the relevant work regulations, and to suggest the applicability of the mobile mapping system to high-speed driving tracks through data acquisition and analysis on road construction sites. The accuracy of the equipment used in the study was verified in accordance with the relevant work regulations, and the possibility of applying the mobile mapping system used for the study to road construction surveying was presented with a maximum error of less than 10cm in the horizontal and vertical directions. In addition, the possibility of utilizing the road construction survey using the mobile mapping system was presented through comparison with the existing method for data acquisition time for construction surveying, production of construction status survey results, and calculation of heatmap and earthworks. In the future, the use of construction status surveying of the mobile mapping system will greatly improve the efficiency of construction work.

MMS Data Accuracy Evaluation by Distance of Reference Point for Construction of Road Geospatial Information (도로공간정보 구축을 위한 기준점 거리 별 MMS 성과물의 정확도 평가)

  • Lee, Keun Wang;Park, Joon Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.549-554
    • /
    • 2021
  • Precise 3D road geospatial information is the basic infrastructure for autonomous driving and is essential data for safe autonomous driving. MMS (Mobile Mapping System) is being used as equipment for road spatial information construction, and related research is being conducted. However, there are insufficient studies to analyze the effect of the baseline reference point distance, which is an important factor in the accuracy of the MMS outcome, on the accuracy of the outcome. Therefore, in this study, the accuracy of the data acquired using MMS by reference point distance was analyzed. Point cloud data was constructed using MMS for the road in the study site. For data processing, 4 data were constructed considering the distance from the reference point for MMS data, and the accuracy was analyzed by comparing the results of 12 checkpoints for accuracy evaluation. The accuracy of the MMS data showed a difference of -0.09 m to 0.11 m in the horizontal direction and 0.04 m to 0.19 m in the height direction. The error in the vertical direction was larger than that in the horizontal direction, and it was found that the accuracy decreased as the distance from the reference point increased. In addition, as the length of the road increases, the distance from the reference point may vary, so additional research is needed. If the accuracy evaluation of the method using multiple reference points is made in the future, it will be possible to present an effective method of using reference points for the construction of precise road spatial information.

Investigation of Domestic and Foreign Forest Resource Management Status and Analysis of Laser Scanning Technology Application (국내외 산림자원관리 현황 조사 및 레이저 스캐닝 기술의 산림적용 방안 분석)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.391-396
    • /
    • 2021
  • In this study, items for forest policy and forest resource research in Austria, Japan, New Zealand, and Indonesia, which are major forest advanced countries, were investigated, and the applicability of point cloud data acquired through laser scanning was identified. Through the study, it was found that forest policies in developed countries are being pursued for the purpose of sustainable forest conservation and management, job creation, and timber productivity improvement, and that new technologies are being researched and applied to actual projects. Korea has a high proportion of forests compared to the national land area compared to major forestry developed countries, but the accumulation of trees is relatively low, so it is a time for scientific forest management to improve the accumulation of trees. To understand the applicability of laser scanning technology, a forest resource survey using point cloud data was conducted, and the diameter of breast height, height, number of trees per unit area were calculated, and the shape of the crown was identified. If field experiments and accuracy evaluations applying various laser scanning technologies are carried out in the future, it will be possible to present the quantitative improvement of forest resource survey using foil cloud.

Fake News Detection on YouTube Using Related Video Information (관련 동영상 정보를 활용한 YouTube 가짜뉴스 탐지 기법)

  • Junho Kim;Yongjun Shin;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.19-36
    • /
    • 2023
  • As advances in information and communication technology have made it easier for anyone to produce and disseminate information, a new problem has emerged: fake news, which is false information intentionally shared to mislead people. Initially spread mainly through text, fake news has gradually evolved and is now distributed in multimedia formats. Since its founding in 2005, YouTube has become the world's leading video platform and is used by most people worldwide. However, it has also become a primary source of fake news, causing social problems. Various researchers have been working on detecting fake news on YouTube. There are content-based and background information-based approaches to fake news detection. Still, content-based approaches are dominant when looking at conventional fake news research and YouTube fake news detection research. This study proposes a fake news detection method based on background information rather than content-based fake news detection. In detail, we suggest detecting fake news by utilizing related video information from YouTube. Specifically, the method detects fake news through CNN, a deep learning network, from the vectorized information obtained from related videos and the original video using Doc2vec, an embedding technique. The empirical analysis shows that the proposed method has better prediction performance than the existing content-based approach to detecting fake news on YouTube. The proposed method in this study contributes to making our society safer and more reliable by preventing the spread of fake news on YouTube, which is highly contagious.

The Verification Of Green Soil Material Characteristics For Slope Protection (사면 보호를 위한 녹생토 재료 특성 검증)

  • Lee, Byung-Jae;Heo, Hyung-Seok;Noh, Jae-Ho;Jang, Young-Il
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.681-692
    • /
    • 2017
  • In recent years, large-scale construction projects such as road pavement construction and new city construction have been carried out nationwide with by the expansion of social overhead facilities and base on the economic development planning, resulting in a rapid increase in artificial slope damage. The existing vegetation-based re-installation method of the slope surface greening method reveals various problems such as lack of bonding force, drying, and lack of organic matter. In this study, research was carried out using vegetation-based material and environmentally friendly soil additives, were are used in combination with natural humus, Bark compost, coco peat, and vermiculite. Uniaxial compressive strength was measured according to the mixing ratio of soil additives and the strength was analyzed. Experiments were carried out on the characteristics of the soil material to gauge the slope protection properties by using the soil compaction test method wherein the soil and the soil additive materials are mixed in relation to the soil height, the number of compaction, the compaction method (layer) and the curing condition. As a result of the experiment, excellent strength performance was demonstrated in soil additives using gypsum cement, and it satisfied vegetation growth standards by using performance enhancer and pH regulator. It was confirmed that the strength increases with the mixing of soil and soil additive, and the stability of slope protection can be improved.

3D Architecture Modeling and Quantity Estimation using SketchUp (스케치업을 활용한 3D 건축모델링 및 물량산출)

  • Kim, Min Gyu;Um, Dae Yong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.701-708
    • /
    • 2017
  • The construction cost is estimated based on the drawings at the design stage and constructor will find efficient construction methods for budgeting and budgeting appropriate to the budget. Accurate quantity estimation and budgeting are critical to determining whether the project is profitable or not. However, since this process is mostly performed depending on manpower or 2D drawings, errors are likely to occur and The BIM(Build Information Modeling) program, which can be automated, is very expensive and difficult to apply in the field. In this study, 3D architectural modeling was performed using SketchUp which is a 3D modeling software and suggest a methodology for Quantity Estimation. As a result, 3D modeling was performed effectively using 2D drawings of buildings. Based on the modeling results, it was possible to calculate the difference of the quantity estimation by 2D drawing and 3D modeling. The research suggests that the 3D modeling using the SketchUp and the calculation of the quantity can prevent the error of the conventional 2D calculation method. If the applicability of the research method is verified through continuous research, it will contribute to increase the efficiency of architectural modeling and quantity Estimation work.

Analysis of Coordinate Change about Domestic CORS by Earthquake (지진발생으로 인한 국내 상시관측소 좌표변화 분석)

  • Kim, Min-Gyu;Park, Joon-Kyu
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.467-475
    • /
    • 2018
  • Recently earthquakes have been increasing worldwide, and the largest earthquake of 5.8 on the Richter scale occurred on September 12, 2016 in the Gyeongju area. After the earthquake, more than 200 aftershocks have occurred from January 2017 to December 2017. The largest earthquake in 2017 was a 4.3-magnitude earthquake near Pohang on November 15. In this study, we tried to analyze the coordinate change due to the earthquake using the data of the CORS(Continuously Operating Reference Station) in Korea. In order to analyze the change of coordinates due to the earthquake in Pohang area on November 15, 2017, data processing was performed by kinematic method. And from January 2017 to December 2017, observation data of 9 stations in Korea were analyzed by relative positioning method and the change of coordinates due to earthquake was analyzed. As a result of the study, it was possible to estimate the instantaneous coordinate change due to the earthquake through the kinematic positioning, and it was suggested that there is no change in the coordinates of the domestic CORS by the relative positioning results. After the 2017 Gyeongju earthquake, aftershocks continue to occur, and it is necessary to monitor the area continuously.

An Observation Study of the Relationship of between the Urban and Architectural Form and Microclimate (도시·건축형태와 미기후의 관계에 대한 관찰 연구)

  • Lee, Gunwon;Jeong, Yunnam
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.109-119
    • /
    • 2018
  • This study investigates the effect of urban and architectural forms on the microclimate in urban areas. It applies urban and architectural elements such as urban form and tissue and building form and characteristics as the main influences on the microclimate within urban area. Among the 23 Automated Weather Stations (AWS) installed within Seoul city by the Korea Meteorological Administration, 6 sites were selected for the analysis, based on their different urban and architectural characteristics, and actual measurements were conducted in August 2017 using individual AWS equipment. Also, the measurements of microclimate and urban and architectural elements within a 500m radius of the AWS measurement points were collected and analyzed. The result of the analysis shows that the microclimate elements, such as wind speed, solar radiation, and temperature, were affected by the direction of the streets, the width, depth, and height of the buildings, the topographic elevation and direction and the traffic volume. This study is expected to contribute to mitigating urban heat island effect and setting the foundation for sustainable cities through development of urban management methods and techniques including the relationship between built environment elements and microclimate.