• Title/Summary/Keyword: Multilayered films

Search Result 125, Processing Time 0.029 seconds

High-temperature Corrosion of CrAlSiN Films in Ar/1%SO2 Gas

  • Lee, Dong Bok;Xiao, Xiao;Hahn, Junhee;Son, Sewon;Yuke, Shi
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.246-250
    • /
    • 2019
  • Nano-multilayered $Cr_{25.2}Al_{19.5}Si_{4.7}N_{50.5}$ films were deposited on the steel substrate by cathodic arc plasma deposition. They were corroded at $900^{\circ}C$ in $Ar/1%SO_2$ gas in order to study their corrosion behavior in sulfidizing/oxidizing environments. Despite the presence of sulfur in the gaseous environment, the corrosion was governed by oxidation, leading to formation of protective oxides such as $Cr_2O_3$ and ${\alpha}-Al_2O_3$, where Si was dissolved. Iron diffused outward from the substrate to the film surface, and oxidized to $Fe_2O_3$ and $Fe_3O_4$. The films were corrosion-resistant up to 150 h owing to the formation of thin ($Cr_2O_3$ and/or ${\alpha}-Al_2O_3$)-rich oxide layers. However, they failed when corroded at $900^{\circ}C$ for 300 h, resulting in the formation of layered oxide scales due to not only outward diffusion of Cr, Al, Si, Fe and N, but also inward movement of sulfur and oxygen.

Structural and electrical properties of Ba(Sr,Ti)O3/K(Ta,Nb)O3 multilayer thin film for the application of electro-caloric devices

  • Kwon, Min-Su;Lee, Sung-Gap;Kim, Kyeong-Min;Choi, Seungkeun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.603-608
    • /
    • 2019
  • In this study, the multilayered thin films of (Ba,Sr)TiO3/K(Ta,Nb)O3 were fabricated by the sol-gel and spin coating methods, and their structural and electrical properties were investigated. The specimen showed polycrystalline X-ray diffraction (XRD) characteristics with a tetragonal structure. The average grain size and film thickness for one coating were about 30~40nm and 60nm, respectively. The phase transition temperature of specimen was lower than 10 ℃. The dielectric constant and loss at 20 ℃ of the specimen coated six times were 1,231 and 0.69, respectively. The rate of change in dielectric constant at an applied direct current (DC) voltage of the six times coated thin films was 17.3%/V. The electrocaloric effect was the highest around the temperature at which the remanent polarization rapidly changed. When an electric field of 660kV/cm was applied to the triply coated thin films, the highest electrocaloric property of 4.41 ℃ was observed.

Investigation on Guided Wave Dispersion Characteristics for Metal Thin Films (금속 박막의 유도초음파 분산 특성 연구)

  • Kim, Miso;Cho, Seung Hyun;Jang, Gang-Won;Lee, Seung-Seok;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.233-240
    • /
    • 2014
  • In this study, we investigated the dispersion characteristics of guided waves in thin films. Dispersion curves are essential for understanding not only the behavior of ultrasonic waves, but also the mechanical properties of thin films. Matrix techniques are presented for modeling ultrasonic waves in multilayered structures before being used to calculate the dispersion curves for Al-steel and Al-composite specimens. When compared with the dispersion curves obtained using the commercial program (Disperse), the dispersion curves generated from the transfer matrix method show its validity. These developed methods are used to obtain dispersion curves for Al thin films deposited on a Si substrate. The resulting dispersion curves enable observation of both dispersive and non-dispersive behavior for the guided waves, depending on the thickness of the thin films.

A Study on the Characteristics of NiInZnO/Ag/NiInZnO Multilayer Thin Films Deposited by RF/DC Magnetron Sputter According to the Thickness of Ag Insertion Layer (RF/DC 마그네트론 스퍼터로 제조한 NiInZnO/Ag/NiInZnO 다층박막의 Ag 금속 삽입층 두께 변화에 따른 특성 연구)

  • Kim, Nam-Ho;Kim, Eun-Mi;Heo, Gi-Seok;Yeo, In-Seon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2014-2018
    • /
    • 2016
  • Transparent, conductive electrode films, showing the particular characteristics of good conductivity and high transparency, are of considerable research interest because of their potential for use in opto-electronic applications, such as smart window, photovoltaic cells and flat panel displays. Multilayer transparent electrodes, having a much lower electrical resistance than widely-used transparent conducting oxide electrodes, were prepared by using RF/DC magnetron sputtering system. The multilayer structure consisted of three layers, [NiInZnO(NIZO)/Ag/NIZO]. The optical and electrical properties of the multilayered NIZO/Ag/NIZO structure were investigated in relation to the thickness of each layer. The optical and electrical characteristics of multilayer structures have been investigated as a function of the Ag and NIZO film thickness. High-quality transparent conductive films have been obtained, with sheet resistance of $9.8{\Omega}/sq$ for Ag film thickness of 8 nm. Also the multilayer films of inserted Ag 8 nm thickness showed a high optical transmittance above 93% in the visible range. The electrical and optical properties of the new multilayer films were mainly dependent on the thickness of Ag insertion layer.

Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: design and applications

  • Park, Sohyeon;Han, Uiyoung;Choi, Daheui;Hong, Jinkee
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.290-302
    • /
    • 2018
  • Background: The main purpose of drug delivery systems is to deliver the drugs at the appropriate concentration to the precise target site. Recently, the application of a thin film in the field of drug delivery has gained increasing interest because of its ability to safely load drugs and to release the drug in a controlled manner, which improves drug efficacy. Drug loading by the thin film can be done in various ways, depending on type of the drug, the area of exposure, and the purpose of drug delivery. Main text: This review summarizes the various methods used for preparing thin films with drugs via Layer-by-layer (LbL) assembly. Furthermore, additional functionalities of thin films using surface modification in drug delivery are briefly discussed. There are three types of methods for preparing a drug-carrying multilayered film using LbL assembly. First methods include approaches for direct loading of the drug into the pre-fabricated multilayer film. Second methods are preparing thin films using drugs as building blocks. Thirdly, the drugs are incorporated in the cargo so that the cargo itself can be used as the materials of the film. Conclusion: The appropriate designs of the drug-loaded film were produced in consideration of the release amounts and site of the desired drug. Furthermore, additional surface modification using the LbL technique enabled the preparation of effective drug delivery carriers with improved targeting effect. Therefore, the multilayer thin films fabricated by the LbL technique are a promising candidate for an ideal drug delivery system and the development possibilities of this technology are infinite.

UV Light-assisted Photocatalytic Degradation of Simluated Methylene blue Dye by Multilayered ZnO Films (다층 ZnO 막에 의한 모의 메틸렌블루 염료의 자외선 광촉매분해)

  • Khan, Shenawar Ali;Zafar, Muhammad;Kim, Woo Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.34-41
    • /
    • 2022
  • As the use of chemical products increases in daily life, the removal of dye waste has also emerged as an important environmental issue. This dye waste can be decomposed using a photocatalyst, and the photocatalyst can be synthesized very cost-effectively by using the sol-gel technology. The sol-gel technology is not only very useful for nanoscale film formation, but also can simply form multilayer structures. Using a multiple spin coating method, in this study, a ZnO film with a multilayered structure (3 layers, 5 layers) was formed by using zinc oxide (ZnO), which is effective in decomposing various dyes. For performance comparison, a ZnO film having a single layer structure by a single spin coating method was prepared as a control. Structural and elemental analysis of ZnO film was performed using an X-ray diffraction analyzer and an energy dispersive X-ray spectrometer. A nanowire-like surface morphology could be observed through a scanning electron microscope. Additionally, UV-Vis spectrophotometer was used to measure the absorbance of UV light. The ZnO film with a five-layer structure degraded the simulated methylene blue by 49% more than the ZnO film with a single-layer structure. In conclusion, it was found that ZnO having a multilayered structure is useful as a photocatalyst that decomposes methylene blue dye more effectively.

Decision of Interface and Depth Scale Calibration of Multilayer Films by SIMS Depth Profiling

  • Hwang, Hye-Hyun;Jang, Jong-Shik;Kang, Hee-Jae;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.274-274
    • /
    • 2012
  • In-depth analysis by secondary ion mass spectrometry (SIMS) is very important for the development of electronic devices using multilayered structures, because the quantity and depth distribution of some elements are critical for the electronic properties. Correct determination of the interface locations is critical for the calibration of the depth scale in SIMS depth profiling analysis of multilayer films. However, the interface locations are distorted from real ones by the several effects due to sputtering with energetic ions. In this study, the determination of interface locations in SIMS depth profiling of multilayer films was investigated by Si/Ge and Ti/Si multilayer systems. The original SIMS depth profiles were converted into compositional depth profiles by the relative sensitivity factors (RSF) derived from the atomic compositions of Si-Ge and Si-Ti alloy reference films determined by Rutherford backscattering spectroscopy. The thicknesses of the Si/Ge and Ti/Si multilayer films measured by SIMS depth profiling with various impact energy ion beam were compared with those measured by TEM. There are two methods to determine the interface locations. The one is the feasibility of 50 atomic % definition in SIMS composition depth profiling. And another one is using a distribution of SiGe and SiTi dimer ions. This study showed that the layer thicknesses measured with low energy oxygen and Cs ion beam and, by extension, with method of 50 atomic % definition were well correlated with the real thicknesses determined by TEM.

  • PDF

Synthesis of PZT thin films made by PZ/PT multi-layered structure (PZ/PT 다층막에 의한 PZT 박막의 제작)

  • Kim, S.D.;Jeon, K.B.;Bae, S.H.;Jin, B.M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.3
    • /
    • pp.105-108
    • /
    • 2008
  • Four different thin films were made by depositing PZ and PT in different stacking sequences. PZ and PT phases are preferably co-existed in sample A and C that are annealing after each coatings. The sample B and D, on the other hands, have tendency toward the PZT phase after co-firing the sample. The sample B that started from PT stacking first was more stable PZT phase than that of PZ first sample D.

Comparison of $Y_2O_3$ and ZnO Nanoparticles Introduced in YBCO Multilayered Films as Artificial Pinning Centers (YBCO 다층박막에 첨가된 $Y_2O_3$와 ZnO 나노입자의 자속꽂음 중심 특성 비교)

  • Wie, C.H.;Tran, D.H.;Putri, W.B.K.;Kang, B.;Kim, Y.J.;Oh, S.J.;Lee, N.H.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • v.13 no.2
    • /
    • pp.90-96
    • /
    • 2011
  • We investigated the properties of artificial pinning centers of YBCO multilayer films in which $Y_2O_3$ and ZnO nanoparticles are uniformly introduced by using the pulsed laser deposition (PLD) technique. $Y_2O_3$ and ZnO nanoparticles were deposited on top of YBCO buffer layer and the density of nanoparticles was controlled by varying the number of nanoparticle layers. YBCO superconducting layers with total thickness of 250 nm were deposited on top of $Y_2O_3$ and ZnO nanoparticles. Based on analyses of the surface morphology, the transition temperature $T_c$, and the critical current density $J_c$, we discussed the difference between the two kinds of nanoparticles as flux pinning centers.

Electrical properties of PZT/BFO/PZT thin film deposited with various temperature (증착 온도에 따른 PZT/BFO 박막의 전기적 특성)

  • Kim, Dae-Young;Nam, Sung-Pill;Noh, Hyun-Ji;Jo, Seo-Hyeon;Lee, Tae-Ho;Lee, Sung-Gap;Lee, Young-Hi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.197-197
    • /
    • 2010
  • Pb(Zr,Ti)O3/BiFeO3/(PZT/BFO) multilayer thin films were coated on Pt/Ti/SiO2/Si substrates by chemical solution deposition. With increasing the annealing temperature, the dielectric and leakage current density properties of multilayered PZT/BFO/PZT thin films were improved. The current density of the PZT/BFO/PZT filmannealing at $600^{\circ}C$ was about 189.39(x10-9A/cm2) at 10V. The relative dielectric constant and the dielectric loss of the PZT/BFO/PZT thin film annealing at $600^{\circ}C$ were about 318 and 0.161%, respectively.

  • PDF