• Title/Summary/Keyword: Multilayered ceramic actuator

Search Result 5, Processing Time 0.018 seconds

Electric Field Strength and Compressive Stress Effects on the Displacement of Multilayered Ceramic Actuators (적층형 세라믹 압전 액추에이터의 전계강도와 압축응력에 따른 변위특성 해석)

  • Song, Jae-Sung;Jeong, Soon-Jong;Kim, In-Sung;Min, Bok-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.248-252
    • /
    • 2005
  • The effects of electric field strength and mechanical compressive stress on the displacement of multilayered ceramic actuator, stacked alternatively 0.2 (PbM $n_{1}$3/N $b_{2}$3/ $O_3$)-0.8(PbZ $r_{0.475}$ $Ti_{0.525}$ $O_3$) ceramic thin films and 70Ag-30Pd electrodes were investigated. Because the actuators were designed to stack ceramic layer and electrode layer alternatively, the ceramic-electrode interfaces may act as a resistance to motion of domain wall. so the polarization and strain were affected by the amount of 180$^{\circ}$domain, electric field strength and mechanical compressive stress. Consequently, the change of polarization, displacement with respect to field strength, and mechanical compressive stress were likely to be caused by readiness of the domain wall movement around the ceramic-electrode interfaces.ces.

Development of Textured 0.37PMN-0.29PIN-0.34PT Ceramics-Based Multilayered Actuator for Cost-Effective Replacement of Single Crystal-Based Actuators

  • Temesgen Tadeyos Zate;Jeong-Woo Sun;Nu-Ri Ko;Bo-Kun Koo;Hye-Lim Yu;Min-Soo Kim;Woo-Jin Choi;Soon-Jong Jeong;Jae-Ho Jeon;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.362-368
    • /
    • 2023
  • Multilayered actuators using Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbTiO3 (PMN-PIN-PT) crystals have demonstrated excellent properties, but are costly and lack mechanical strength. Textured PMN-PIN-PT ceramics exhibit robust mechanical strength and comparable properties to their single crystals form. However, the development of multilayered actuators using textured PMN-PIN-PT ceramics has not been achieved until now. This study presents the development of a multilayered actuator using textured 0.37PMN-0.29PIN-0.34PT ceramics with an Ag0.9/Pd0.1 inner electrode, co-fired at 950℃. A random 0.37PMN-0.29PIN-0.34PT ceramics multilayered actuator was also developed for comparison. The multilayered actuator consisted of 9 ceramic layers (36 ㎛ thickness) with an overall actuator thickness of 0.401 mm. The textured and random 0.37PMN-0.29PIN-0.34PT ceramics-based multilayered actuators achieved displacements of 0.61 ㎛ (0.15% strain) and 0.23 ㎛ (0.057% strain) at a low applied peak voltage of 100 V. These results suggest that the developed multilayered actuator using high-performance textured 0.37PMN-0.29PIN-0.34PT ceramics has the potential to replace expensive single crystal-based actuators cost-effectively.

The fabrication and strain properties of piezoeletric ceramic actuator using PMN - PT -PZ system (PMN - PT - PZ 계 세라믹스를 이용한 압전 엑츄에이터의 제작 및 변위 특성)

  • Ji, Seung-Han;Lee, Neung-Heon;Lee, Deok-Chool;Kim, Ho-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.15-18
    • /
    • 1993
  • Piezoelectric Actuator and electrostrictive Actuator samples were fabricated using PMN-PT-PZ system ceramics with Barium substitution, and the strain properties of them investigated. The largest Piezoelectric coefficient and electromechanical coupling coefficient were observed at sintering temperature $1250^{\circ}C$, Barium 0.05 mol %. The strain of poled samples is observed twice highly then unpoled ones, and the former showed larger hysteresis in strain then the latter, too. Poled multilayered actuator samples showed considerable strain.

  • PDF

Large Scale Numerical Analysis for the Performance Prediction of Multilayered Composite Curved Actuator (적층 복합재료를 사용한 곡면형 작동기의 성능 예측을 위한 대규모 수치해석 연구)

  • 정순완;황인성;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.167-170
    • /
    • 2003
  • In this paper, the electromechanical displacements of curved actuators using laminated composites are calculated by finite element method to design the optimal configuration of curved actuators. To predict the pre-stress in the device due to the mismatch in coefficients of thermal expansion, the carbon-epoxy and glass- epoxy as well as PZT ceramic is also numerically modeled by using hexahedral solid elements. Because the modeling of these thin layers causes the numbers of degree of freedom to increase, large-scale structural analyses are performed in a cluster system in this study. The curved shape and pre-stress in the actuator are obtained by the cured curvature analysis. The displacement under the piezoelectric force by an applied voltage is also calculated to compare the performance of curved actuator. The thickness of composite is chosen as design factor.

  • PDF

Aging Phenomena of Multilayered PMN-PZT Ceramic Actuator (적층형 PMN-PZT 세라믹 압전 액추에이터의 열화특성)

  • Song, Jae-Sung;Jeong, Soon-Jong;Kim, In-Sung;Lee, Won-Jae;Lee, Dong-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.445-449
    • /
    • 2005
  • Aging phenomena of 0.2PMN-0.8PZT multilayered ceramic actuators(MCA) have been investigated at the room temperature. The piezoelectric materials were synthesized as conventional ceramic process, and MCA were fabricatedby tape casting methods. The crystalline structures and lattice parameters were investigated by X-ray diffraction analysis, showing the structure was tetragonal and c/a was about 1.01. And, the effective electromechanical coupling coefficient keff and pseudo-piezoelectric constant $d_{33}$were measured. Variable unipolar electric fields, $2{\sim}4kV/mm$, were applied to MCh to investigate the aging characteristics. After 2 kV/mm unipolar electric field, keff and $d_{33}$ were 0.454 and 4.44 respectively. The measured and simulated values using for aging phenomena analysis, had a good fit to the linear logarithmic stretched exponential law.