• Title/Summary/Keyword: Multilayered Composite

Search Result 48, Processing Time 0.025 seconds

Finite element dynamic analysis of laminated composite beams under moving loads

  • Kahya, Volkan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.729-745
    • /
    • 2012
  • This study presents dynamic analysis of laminated beams traversed by moving loads using a multilayered beam element based on the first-order shear deformation theory. The present element consists of N layers with different thickness and material property, and has (3N + 7) degrees of freedom corresponding three axial, four transversal, and 3N rotational displacements. Delamination and interfacial slip are not allowed. Comparisons with analytical and/or numerical results available in literature for some illustrative examples are made. Numerical results for natural frequencies, deflections and stresses of laminated beams are given to explain the effect of load speed, lamina layup, and boundary conditions.

Preparation of a Porous Chitosan/Fibroin-Hydroxyapatite Composite Matrix for Tissue Engineering

  • Kim, Hong-Sung;Kim, Jong-Tae;Jung, Young-Jin;Ryu, Su-Chak;Son, Hong-Joo;Kim, Yong-Gyun
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • Chitosan, fibroin, and hydroxyapatite are natural biopolymers and bioceramics that are biocompatible, biodegradable, and resorb able for biomedical applications. The highly porous, chitosan-based, bioceramic hybrid composite, chitosanlfibroin-hydroxyapatite composite, was prepared by a novel method using thermally induced phase separation. The composite had a porosity of more than 94% and exhibited two continuous and different morphologies: an irregularly isotropic pore structure on the surface and a regularly anisotropic multilayered structure in the interior. In addition, the composite was composed of an interconnected open pore structure with a pore size below a few hundred microns. The chemical composition, pore morphology, microstructure, fluid absorptivity, protein permeability, and mechanical strength were investigated according to the composition rate of bioceramics to biopolymers for use in tissue engineering. The incorporation of hydroxyapatite improved the fluid absorptivity, protein permeability, and tenacity of the composite while maintaining high porosity and a suitable microstructure.

A Study on Mechanical Strength in AI7075/CFRP Hybrid Composite (AI7075/CFRP 하이브리드 복합재료의 기계적강도 평가에 관한 연구)

  • 유재환
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.57-62
    • /
    • 1997
  • The combined structure of hybrid composite made through the bonding process of materials of different properties greatly defines its mechanical characteristics, as the results of the experiments on materials of different properties show much dissimilarity. When carbon/epoxy materials are applied to hybrid composite, the carbon materials helps to improve the mechanical properties of the hybrid composite, and the epoxy reduces its fracture strain and impact resistance. Carbon fiber which is now in general commercialization is classified as high modulus or high strength system, and its manufacturing methods are various. The study of the materials having combined structure is focused on the numerical analysis of the layers of bonding surface in materials with difference modulus. The hybrid composite made through the multilayered bonding of reinforced aluminium sheets with aramid fiber now faces the marketing phase, and especially its excellent fatigue resistance and mechanical properties promote active researches on the similar products of hybrid composite. This study aims to investigate the effects of CFRP volume ratio and fiber's orientation over the properties of mechanical strength and fatigue life of the hybrid composite, AI7075/CFRP. To carry out this study, static tensile and fatigue tests were given to some of the panels which, made through the co-cure processing in an autoclave, have different CFRP volume ratio and carbon fiber orientations.

  • PDF

A Study of Thermal Properties of LDPE-Nanoclay Composite Films

  • Bumbudsanpharoke, Nattinee;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • This work focused on the study of thermal properties and kinetic behavior of LDPE-nanoclay composite films. The effect of nanoclay content (0.5, 1, 3, and 5 wt%) on thermal stability and crystallization characteristics of the nanocomposites were investigated by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results from endothermic curve showed that the nanoclay played an important role in the crystallization of nanocomposites by acting as nucleating agent. From exothermic curve, there was a crystallization temperature shift which was attributed to crystallization process induced by nanoclay. The TGA results showed that the addition of nanoclay significantly increased the thermal stability of LDPE matrix, which was likely due to the characteristic of layered silicates/clays dispersed in LDPE matrix as well as the formation of multilayered carbonaceous-silicate char. A well-known Coats-Redfern method was used to evaluate the decomposition activation energy of nanocomposite. It was demonstrated that introducing of nanoclay to LDPE matrix escalated the activation energy of nanocomposite decomposition resulting in thermal stability improvement.

Buckling of Bimodulus Composite Thin Plate (이중탄성계수 복합재료판의 좌굴)

  • 이영신;김종천
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1520-1534
    • /
    • 1994
  • A new analytical method for the prediction of the buckling behavior of laminated plates consisting of layers having different properties in tension and compression, so called bimodulus, is proposed in this paper. Buckling analysis of bimodular composite laminated paltes are performed with the results reduced from plate bending analysis. The governing equations of bimodular plates are based on the first shear deformation theory. As a case study, bending and buckling of simply supported, multilayered, symmetric, antisymmtric, and specially orthotropic laminates under uniformly distributed lateral load for bending analysis and in-plane load for buckling are considered. The results of the bending analysis are compared with the previous papers. Then, the fundamental critical buckling loads and buckling modes are calculated for the various bimodular composite rectangular thin plates.

Modeling and Performance Evaluation of Muti-layered Composite Floor Plates with Holes (천공 다층 복합 바닥재의 모델링 및 성능 평가)

  • Yoo, Hong-Hee;Lee, Chang-Guen;Yoo, Hong-Geol;Ju, Young-Jun;Cho, Jung-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.367.1-367
    • /
    • 2002
  • Recently, the noise environmental issue in compound residential areas like apartments becomes a very critical factor fer the building designers. In order to satisfy the customer need to live in a quiet environment, several interior structures for buildings are being introduced. The multi-layered composite floor plate is one of them. This structure is designed to prevent the noise generated by an object collision. (omitted)

  • PDF

Dynamics of multilayered viscoelastic beams

  • Roy, H.;Dutt, J.K.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.391-406
    • /
    • 2009
  • Viscoelastic materials store as well as dissipate energy to the thermal domain under deformation. Two efficient modelling techniques reported in literature use coupled (thermo-mechanical) ATF (Augmenting Thermodynamic Fields) displacements and ADF (Anelastic Displacement Fields) displacements, to represent the constitutive relationship in time domain by using certain viscoelastic parameters. Viscoelastic parameters are first extracted from the storage modulus and loss factor normally reported in hand books with the help of Genetic Algorithm and then constitutive relationships are used to obtain the equations of motion of the continuum after discretizing it with finite beam elements. The equations of motion are solved to get the frequency response function and modal damping ratio. The process may be applied to study the dynamic behaviour of composite beams and rotors comprising of several viscoelastic layers. Dynamic behaviour of a composite beam, formed by concentric layers of steel and aluminium is studied as an example.

Rapid prediction of long-term deflections in composite frames

  • Pendharkar, Umesh;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.547-563
    • /
    • 2015
  • Deflection in a beam of a composite frame is a serviceability design criterion. This paper presents a methodology for rapid prediction of long-term mid-span deflections of beams in composite frames subjected to service load. Neural networks have been developed to predict the inelastic mid-span deflections in beams of frames (typically for 20 years, considering cracking, and time effects, i.e., creep and shrinkage in concrete) from the elastic moments and elastic mid-span deflections (neglecting cracking, and time effects). These models can be used for frames with any number of bays and stories. The training, validating, and testing data sets for the neural networks are generated using a hybrid analytical-numerical procedure of analysis. Multilayered feed-forward networks have been developed using sigmoid function as an activation function and the back propagation-learning algorithm for training. The proposed neural networks are validated for an example frame of different number of spans and stories and the errors are shown to be small. Sensitivity studies are carried out using the developed neural networks. These studies show the influence of variations of input parameters on the output parameter. The neural networks can be used in every day design as they enable rapid prediction of inelastic mid-span deflections with reasonable accuracy for practical purposes and require computational effort which is a fraction of that required for the available methods.

Acoustic Performance of the Multilayered Panel with Helmholtz Resonators (Helmholtz 공명기를 내장한 다층패널의 음향 특성에 관한 연구)

  • Jong-Soo Seo;Jae-Jin Jeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.123-134
    • /
    • 1992
  • The reduction of the airborne noise level is essential to the comfortability for mien and passengers in ships. In this paper, the acoustic characteristics on the multilayered acoustic panel with the Helmholtz resonator was described analytically and experimentally. The design software based on the Transfer Matrix Analysis(TMA) method for the acoustic enclosing panel was developed. According to the change of the design parameters of the panel, verious transmission losses were obtained using the developed software. As a result, it was verified that the acoustic characteristics of the composite panel was excellent in comparison with the conventional acoustic partitioning structures. This panel can be applicable to the acoustic enclosure system.

  • PDF

Development of Analysis Model for Underwater Acoustic Performance of Multi-Layered Coatings Containing Visco-Elastic Composites (점탄성 복합재가 포함된 다층구조 코팅재의 수중음향성능 해석모델 개발)

  • Kim, Jae Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.25-39
    • /
    • 2018
  • In this paper, an integrated analysis model for evaluating the underwater acoustic performance of the multilayered acoustic coatings containing visco-elastic composite layers with hollow glass microspheres is described. The model uses the effective medium theory considering the acoustic scattering and resonance effects of the inclusions. Also, the model incorporates the compressive deformation mechanism associated with hydrostatic pressure. The technique developed in this work was used as the acoustic layer design and performance analysis tools for the practical hull coatings and acoustic baffles in Korean next generation submarines.