• Title, Summary, Keyword: Multilayer piezoelectric transformer

Search Result 53, Processing Time 0.027 seconds

Electrical properties of Step -Down Multilayer Piezoelectric transformer sintered at $900^{\circ}C$ Low Temperature ($900^{\circ}C$ 저온에서 소결된 깅압용 적층 압전 변압기의 전기적 특성)

  • Lee, Kba-Soo;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.16-16
    • /
    • 2010
  • The multilayer piezoelectric transformer was manufactured using $Pb(Zn_{1/2}W_{1/2})O_3-Pb(Mn_{1/3}Nb_{2/3})O_3-Pb(Zr_{0.48}Ti_{0.52})O_3$ (abbreviated as PZW-PMN-PZT) ceramics and their electrical properties were investigated. The $k_{eff}$ of the input and the output calculated from the resonant and anti-resonant frequencies were 0.403 and 0.233, respectively. The voltage step-up ratio showed the maximum value in the vicinity of 81kHz. The multilayer piezoelectric transformer showed the temperature rise of about $36^{\circ}C$ at the output power of 12w.

  • PDF

압전변압기용 저온소결 PZW-PMN-PZT 세라믹스

  • Lee, Gap-Su;Ryu, Ju-Hyeon;Kim, In-Seong;Song, Jae-Seong;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.1-1
    • /
    • 2010
  • In this study, electrical properties of multilayer piezoelectric transformer sintered at $900^{\circ}C$ using pure Ag internel electrode was investigated. This multilayer piezoelectric transformer was fabricated as a ring-dot type. The multilayer piezoelectric transformer should have hight electromechanical coupling factor ($k_p$) and electromechanical qualiy factor ($Q_m$) in order to increase the efficiency of energy conversion between electrical and mechanical energy. The maximum values of $k_p$ and $Q_m$ showed 0.552 and 1320, respectively.

  • PDF

Effect. of $TiO_2$ and PZT powder additions on the Ag/Pd Electrode for Step-down Multilayer Piezoelectric Transformer (적충 강압형 압전변압기 Ag/Pd 전극의 $TiO_2$ 와 PZT 분말의 첨가에 따른 효과연구)

  • Joo, Hyeon-Kyu;Kim, In-Sung;Vo, Vietthang;Jeong, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.334-334
    • /
    • 2010
  • In order to fabricate the multilayer piezoelectric transformer by tape casting method, we investigated the effect of $TiO_2$ and PZT powder additions on the Ag/Pd electrode. Meanwhile, effects of $TiO_2$ and PZT powder additives on the microstructure and electrical properties of Ag/Pd electrode were investigated in detail. In addition, the multilayer piezoelectric transformers were fabricated and the characteristics with various load resistance were measured at resonance frequency. The voltage step-up ratio was continuously change with increasing input voltage and load resistance, and then output voltage and powers were increased with increasing input voltage at matching impedance. The temperature rise of multilayer piezoelectric transformers were increased with increasing input voltage and load resistance. Meanwhile, multilayer piezoelectric transformers sintered at $1100^{\circ}C$ show the favorable characteristics with a power of 15 W at $100\;{\Omega}$.

  • PDF

A Study on the Electrical Properties of Highly Efficient Ceramic Piezoelectric Transformer (고효율 세라믹 압전 변압기의 전기적 특성에 관한 연구)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1229-1232
    • /
    • 2010
  • In this study, in order to develop multilayer piezoelectric transformer for high electromechanical coupling factor and mechanical quality factor. and to show the general approach to the design of inverters utilizing PT as a circuit element. The description of the piezoelectric effect is not present here and can be easily found in numerous publications as well as complex equations and formulae. What is the most important to understand is that "they are different" -one cannot just change an electromagnetic transformer (EMT) for a piezoelectric one. Several examples of PT-based circuitry will help to start and use multilayer piezoelectric transformer advantages most effectively.

Characteristics of AC-DC Converter using Multilayer Piezoelectric Transformer (적층형 압전변압기를 이용한 AC-DC 컨버터 특성)

  • Shin, Hyun-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1315-1320
    • /
    • 2012
  • In this study, piezoelectric AC-DC converter using ring-dot type multilayer piezoelectric transformer with no anisotropic of polarization was developed. Considering the characteristics of piezoelectric transformer which is very narrow operating frequency range, piezoelectric converter was designed with mixed structure of PFM driving method for feedback control of oscillation frequency and PWM driving method for output control. Maximum power and allowed current of the developed piezoelectric converter showing stable driving with minimum heat was 25W and 900mA, respectively. The output voltage of the piezoelectric converter was controlled by the driving oscillation frequency and showed stable and efficient operating characteristics at the maximum power.

Piezoelectric and dielectric properties of PMN-PZN ceramics for multilayer piezoelectric transformer with PZN substitution (PZN 치환에 따른 적층 압전변압기용 PMN-PZT 세라믹의 압전 및 유전 특성)

  • Lee, Chang-Bae;Yoo, Ju-Hyun;Paik, Dong-Soo;Im, In-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.59-61
    • /
    • 2005
  • In this paper, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, $Pb[(Mn_{1/3},Nb_{2/3})_{0.07}(Zn_{1/3}Nb_{2/3})_a(Zr_{0.48}Ti_{0.52})_{1-0.07-a}O_3]$ ceramics were manufactured with the variations of PZN from 2 to 14mol% and their dielectric and piezoelectric properties were investigated. Sintering temperature was varied from 910 to $1000^{\circ}C$. At 8mol% PZN substituted specimen sintered at $970^{\circ}C$, electromechanical coupling factor(kp), mechanical quality factor(Qm), dielectric constant and peizoelectric constant($d_{33}$) showed the optimal values of 0.536, 1803, 1551 and 328[pC/N), respectively, for multilayer piezoelectric transformer application.

  • PDF

Design and FEM Analysis of Piezoelectric Ceramic Transformer for Low-Voltage Step-Down Application (강압용 압전변압기의 설계 및 유한요소해석)

  • Jueng, Hyon-Ho;Lee, Sang-Ki;Park, Tae-Gone;Lee, Won-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.70-73
    • /
    • 2000
  • This paper present a new sort of multilayer piezoelectric ceramic transformer for AC-adapter. This piezoelectric transformer operates in the second longitudinal vibration mode. The output voltage of the multilayer piezoelectric transformer was simulated using ANSYS, that is one of the FEM analysis program. As results, the minimum displacement was occurred at the two paints where one is the middle of input and the other is middle of output side in second thickness extensional vibration mode. And output voltage was inversely decreased by increasing number of output layers. 缀Ѐ㘰〻ሀ䝥湥牡氠瑥捨湯汯杹

  • PDF

Design Analysis of Step-down Multilayer Piezoelectric Transformer

  • Hoonbum Shin;Hyungkeun Ahn;Han, Deuk-Young
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.139-144
    • /
    • 2003
  • In this paper, 11 and 13 layered step-down piezoelectric transformers were fabricated and their electrical characteristics have been analyzed for AC-adapter. When the voltage is applied to the driving piezoelectric vibrator polarized in the longitudinal direction, the output voltage is generated at the generating piezoelectric vibrator polarized in the thickness direction due to the piezoelectric effects. From the piezoelectric direct and converse effects, symbolic expressions between the electric inputs and outputs of the step-down piezoelectric transformer are derived with an equivalent circuit model. With those expressions, load and frequency characteristics are discussed through the simulations. Output voltage and current from a 11-layered and a 13-layered piezoelectric transformers were measured under the different load and frequency conditions. First we measured resonant frequency from impedance curve and got equivalent impedance value of the piezoelectric transformer from admittance plot. It was shown from experiments that output voltage increase s and resonant frequency changes according to the various resistor loads. Output current decreases inversely proportional to the change of loads. Moreover, the measured output voltage and current are well matched with the simulated results obtained from the proposed equivalent circuit model. Furthermore, a new step-down piezoelectric transformer has been suggested to Increase the output power based on a simulation result having a driving piezoelectric vibrator polarized thickness direction.

Dielectric and piezoelectric properties of low temperature sintering PMN-PZT ceramics for multilayer piezoelectric transformer with $Li_2CO_3$ addition (적층 압전변압기용 저온소결 PMN-PZT 압전세라믹의 $Li_2CO_3$ 첨가에 따른 유전 및 압전특성)

  • Lee, Chang-Bae;Yoo, Ju-Hyun;Park, Chang-Yub;Chung, Kwang-Hyun;Jeong, Yeong-Ho;Paik, Dong-Soo;Jeong, Hoy-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.821-825
    • /
    • 2004
  • In this paper, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, PMN-PZT ceramcis using $Li_2CO_3$ and $Bi_2O_3$ as sintering aids were manufactured, and their microstructural, dielectric and piezoelectric properties were investigated. The sintering aids were proved to lower the sintering temperature of piezoelectric ceramics due to the effect of $LiBiO_2$ liquid phase. At 0.1wt% $Li_2CO_3$ added specimen sintered at $970[^{\circ}C]$, electromechanical coupling factor(Kp), mechanical quality factor(Qm) and dielectric constant showed the optimum values of 0.50, 2,413 and 1,245, respectively, for multilayer piezoelectric transformer application.

  • PDF