• 제목/요약/키워드: Multifunctional sensors

검색결과 26건 처리시간 0.023초

Perturbation analysis for robust damage detection with application to multifunctional aircraft structures

  • Hajrya, Rafik;Mechbal, Nazih
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.435-457
    • /
    • 2015
  • The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.

Inductively coupled nanocomposite wireless strain and pH sensors

  • Loh, Kenneth J.;Lynch, Jerome P.;Kotov, Nicholas A.
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.531-548
    • /
    • 2008
  • Recently, dense sensor instrumentation for structural health monitoring has motivated the need for novel passive wireless sensors that do not require a portable power source, such as batteries. Using a layer-by-layer self-assembly process, nano-structured multifunctional carbon nanotube-based thin film sensors of controlled morphology are fabricated. Through judicious selection of polyelectrolytic constituents, specific sensing transduction mechanisms can be encoded within these homogenous thin films. In this study, the thin films are specifically designed to change electrical properties to strain and pH stimulus. Validation of wireless communications is performed using traditional magnetic coil antennas of various turns for passive RFID (radio frequency identification) applications. Preliminary experimental results shown in this study have identified characteristic frequency and bandwidth changes in tandem with varying strain and pH, respectively. Finally, ongoing research is presented on the use of gold nanocolloids and carbon nanotubes during layer-by-layer assembly to fabricate highly conductive coil antennas for wireless communications.

Production of Functional Colloids and Fibers from Phase Separation During Electrohydrodynamic Process

  • 정운룡
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.1.2-1.2
    • /
    • 2011
  • Electrohydrodynamics is a good approach to produce uniform-sized colloids and fibers in a continuous process. The dimension can be controlled from tens of nanometers to a few micrometers. The structure of the colloids and nanofibers from electrohydrodynamics has been diversified according to the uses. Especially, core-shell structure and hybridization with functional nanomaterials are fascinating due to their possible uses in drug-delivery systems, multifunctional scaffolds, organic/inorganic hybrids with new functions, and highly sensitive gas- or bio-sensors. This talk will present the structural variations in the colloids and fibers by simply employing phase separation during electrohydrodynamic process and demonstrate their possible applications.

  • PDF

Chemiresistive Sensor Array Based on Semiconducting Metal Oxides for Environmental Monitoring

  • Moon, Hi Gyu;Han, Soo Deok;Kang, Min-Gyu;Jung, Woo-Suk;Jang, Ho Won;Yoo, Kwang Soo;Park, Hyung-Ho;Kang, Chong Yun
    • 센서학회지
    • /
    • 제23권1호
    • /
    • pp.15-18
    • /
    • 2014
  • We present gas sensing performance based on $2{\times}2$ sensor array with four different elements ($TiO_2$, $SnO_2$, $WO_3$ and $In_2O_3$ thin films) fabricated by rf sputter. Each thin film was deposited onto the selected $SiO_2$/Si substrate with Pt interdigitated electrodes (IDEs) of $5{\mu}m$ spacing which were fabricated on a $SiO_2$/Si substrate using photolithography and dry etching. For 5 ppm $NO_2$ and 50 ppm CO, each thin film sensor has a different response to offers the distinguishable response pattern for different gas molecules. Compared with the conventional micro-fabrication technology, $2{\times}2$ sensor array with such remarkable response pattern will be open a new foundation for monolithic integration of high-performance chemoresistive sensors with simplicity in fabrication, low cost, high reliablity, and multifunctional smart sensors for environmental monitoring.

저차원 나노 소재 기반 다기능 전자파 차폐 및 센싱 응용기술 (Mutifunctional EMI Shielding and Sensing Applications based on Low-dimensional Nanomaterials)

  • 민복기;이윤식;탐반누엔;슈브라몬달;최춘기
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.11-20
    • /
    • 2020
  • With the widespread use of high-performance electronics and mobile communications, electromagnetic interference (EMI) shielding has become crucial for protection against malfunctioning of electronic equipment and harmful effects to human health. In addition, smart sensor technologies will be rapidly developed in untact (non-contact) environments and personal healthcare fields. Herein, we introduce our recently developed technologies for flexible multifunctional EMI shielding, and highly sensitive wearable pressure-strain and humidity sensors realized using low-dimensional nanomaterials.

기계적 롤링을 통한 수직배향 나노구조의 다용도 박막 프레임워크 변환 (Structural Formulation of As-grown Vertically Aligned Nanostructures to Multifunctional Thin-Film Frameworks through Controlled Mechanical Rolling)

  • 박태준;최석민;윤도경;이승조;박재규;이재혁;김정대;이한길;옥종걸
    • 한국생산제조학회지
    • /
    • 제25권4호
    • /
    • pp.266-270
    • /
    • 2016
  • We present a useful and practical manufacturing technique that enables the structural conversion of delicate as-grown nanostructures to more beneficial and robust thin-film frameworks through controlled mechanical rolling. Functional nanostructures such as carbon nanotubes grown through chemical vapor deposition in a vertically aligned and very loosely packed manner, and thus difficult to manipulate for subsequent uses, can be prepared in an array of thin blades by patterning the growth catalyst layer. They can then be toppled as dominos through precisely controlled mechanical rolling. The nanostructures formulated to horizontally aligned thin films are much more favorable for device applications typically based on thin-film configuration. The proposed technique may broaden the functionality and applicability of as-grown nanostructures by converting them into thin-film frameworks that are easier to handle and more durable and favorable for fabricating thin-film devices for electronics, sensors, and other applications.

Seismic and vibration tests for assessing the effectiveness of GFRP for retrofitting masonry structures

  • Michelis, Paul;Papadimitriou, Costas;Karaiskos, Grigoris K.;Papadioti, Dimitra-Christina;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제9권3호
    • /
    • pp.207-230
    • /
    • 2012
  • Full-scale shake table seismic experiments and low-amplitude vibration tests on a masonry building are carried out to assess its seismic performance as well as study the effectiveness of a new multifunctional textile material for retrofitting masonry structures against earthquakes. The un-reinforced and the retrofitted with glass fiber reinforced polymer (GFRP) strips masonry building was subjected to a series of earthquake excitations of increasing magnitude in order to progressively induce various small, moderate and severe levels of damage to the masonry walls. The performance of the original and retrofitted building states is evaluated. Changes in the dynamic characteristics (lowest four modal frequencies and damping ratios) of the building are used to assess and quantify the damage states of the masonry walls. For this, the dynamic modal characteristics of the structure states after each earthquake event were estimated by performing low-amplitude impulse hammer and sine-sweep forced vibration tests. Comparisons between the modal results calculated using traditional accelerometers and those using Fiber Bragg Grating (FBG) sensors embedded in the reinforcing textile were carried on to investigate the reliability and accuracy of FBG sensors in tracking the dynamic behaviour of the building. The retrofitting actions restored the stiffness characteristics of the reinforced masonry structure to the levels of the original undamaged un-reinforced structure. The results show that despite a similar dynamic behavior identified, corresponding to reduction of the modal frequencies, the un-reinforced masonry building was severely damaged, while the reinforced masonry building was able to withstand, without visual damage, the induced strong seismic excitations. The applied GFRP reinforcement architecture for one storey buildings was experimentally proven reliable for the most severe earthquake accelerations. It was easily placed in a short time and it is a cost effective solution (covering only 20% of the external wall surfaces) when compared to the cost for full wall coverage by GFRPs.

FDM 3D프린팅 기반 유연굽힘센서 (Fused Deposition Modeling 3D Printing-based Flexible Bending Sensor)

  • 이선곤;오영찬;김주형
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.63-71
    • /
    • 2020
  • Recently, to improve convenience, flexible electronics are quickly being developed for a number of application areas. Flexible electronic devices comprise characters such as being bendable, stretchable, foldable, and wearable. Effectively manufacturing flexible electronic devices requires high efficiency, low costs, and simple processes for manufacturing technology. Through this study, we enabled the rapid production of multifunctional flexible bending sensors using a simple, low-cost Fused Deposition Modeling (FDM) 3D printer. Furthermore, we demonstrated the possibility of the rapid production of a range of functional flexible bending sensors using a simple, low-cost FDM 3D printer. Accurate and reproducible functional materials made by FDM 3D printers are an effective tool for the fabrication of flexible sensor electronic devices. The 3D-printed flexible bending sensor consisted of polyurethane and a conductive filament. Two patterns of electrodes (straight and Hilbert curve) for the 3D printing flexible sensor were fabricated and analyzed for the characteristics of bending displacement. The experimental results showed that the straight curve electrode sensor sensing ability was superior to the Hilbert curve electrode sensor, and the electrical conductivity of the Hilbert curve electrode sensor is better than the straight curve electrode sensor. The results of this study will be very useful for the fabrication of various 3D-printed flexible sensor devices with multiple degrees of freedom that are not limited by size and shape.

사물 인터넷을 위한 다기능 인터페이스 보드 구현 (Multifunctional Interface Board for the implementation of IoT)

  • 김가을;오강진;조수민;권오준;김선형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.530-532
    • /
    • 2015
  • 현재 스마트 기기의 개발과 근거리 통신 기술의 발전으로 사물인터넷(IOT)에 관련한 연구가 활발하게 진행되고 있다. 본 논문에서는 임베디드 리눅스 및 안드로이드 운영체제(OS) 환경에서 근거리 통신 네트웍을 손쉽게 할 수 있는 인터페이스 보드를 설계 제작하였고, IoT 센서 모듈과 디바이스 드라이버 모듈 제작하였다. 디바이스들은 인터페이스 보드와 분리, 교체가 가능하게 하여 사물인터넷(I0T) 구현이 용이하도록 하였고, 안드로이드를 이용해 몇 가지 센서들을 제어할 수 있는 앱을 구현하였다.

  • PDF

Study on the Thermal and Electrical Conductivity Properties of Titanium-sputtered Materials

  • Han, Hye Ree
    • 한국의류학회지
    • /
    • 제46권3호
    • /
    • pp.530-544
    • /
    • 2022
  • Titanium exhibits substantial corrosion resistance, strength, and ductility, with a specific gravity of approximately 4.5 and a melting point of approximately 1800℃. It is currently used in aircraft parts and space development. This study considered the thermal characteristics, stealth effects of infrared thermal imaging cameras, electromagnetic shielding, and electrical conductivity of Ti-sputtered materials. Base materials of different densities and types were treated using titanium sputtering. Infrared thermal imaging showed a better stealth effect when the titanium layer was directed toward the outside. The film sample presented a better stealth effect than the fabrics did. In each of the samples subjected to titanium sputtering, when the titanium layer was directed outward, the untreated sample or exposed titanium layer showed surface temperatures lower than those of the samples with the titanium layer oriented toward the heat source. Additionally, after the titanium sputtering treatment, the films conducted electricity (low resistance) better than the fabrics did. All titanium-sputtered specimens presented reduced electromagnetic wave transmission and significantly reduced infrared transmission. These results are expected to apply to military uniforms (soldiers' protective clothing to gain the upper hand on the battlefield), medical sensors, multifunctional intelligent textiles and etc.