• Title/Summary/Keyword: Multifaceted modeling simulation

Search Result 3, Processing Time 0.016 seconds

Multifaceted Modeling Methodology for System of Systems using IEEE 1516 HLA/RTI (IEEE 1516 HLA/RTI를 이용한 복합 시스템의 다측면적인 모델링 방법론)

  • Kim, Byeong Soo;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.2
    • /
    • pp.19-29
    • /
    • 2017
  • System Entity Structure/Model Base (SES/MB) enhances organizing model families and storing and reusing model components in the multifaceted system modeling. However, the real world can be described not only an individual system but also a collection of those systems, which is called system of systems (SoS). Because SES/MB has a limitation to simulate the SoS using HLA/RTI, an extended framework is required to simulate it. Therefore, this paper proposes System of Systems Entity Structure/Federate Base (SoSES/FB) for simulation in a distributed environment (HLA/RTI). The proposed method provides the library of federates (FB) and System of System Entity Structure (SoSES) formalism, which represents structural knowledge of a collection of simulators. It also provides a methodology for the development process of distributed simulation. The paper introduces the anti-missile defense simulation using the proposed SoSES/FB.

Knowledge Structures to Simulate the Spatial Behavior of Intelligent Virtual Humans (지능형 가상인간의 공간적 행동을 모사하기 위한 지식구조)

  • Hong, Seung-Wan;Park, Jong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.12
    • /
    • pp.230-240
    • /
    • 2020
  • To develop a virtual world-based immersive tutoring system, we would like to develop a simulation in the spatial aspect to maximize the diversity and realism of the situation. This implementation requires the modeling of virtual space as well as the knowledge and intelligent thinking functions of virtual humans. First, information structures are needed to simulate the hierarchical and multifaceted composition of space and the corresponding knowledge of virtual humans. Specifically, four structures for 2.5D spatial distribution expression, complex spatial relationship expression, object expression, and temporal and spatial representation of events are developed respectively. It then uses these expressed knowledge to develop the spatial thinking function of virtual humans needed to make spatial movement. In general, events have a chain effect on adjacent or connected objects through force, resulting in a variety of situations and reflected in the planning of the next action by the virtual humans involved. For this purpose, the development of events according to historical trends is recorded on the representation structure of time and space. It embodies typical events to demonstrate the feasibility of independent behavior in complex spaces among virtual people.

Assessing Unit Hydrograph Parameters and Peak Runoff Responses from Storm Rainfall Events: A Case Study in Hancheon Basin of Jeju Island

  • Kar, Kanak Kanti;Yang, Sung-Kee;Lee, Jun-Ho
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.437-447
    • /
    • 2015
  • Estimation of runoff peak is needed to assess water availability, in order to support the multifaceted water uses and functions, hence to underscore the modalities for efficient water utilization. The magnitude of storm rainfall acts as a primary input for basin level runoff computation. The rainfall-runoff linkage plays a pivotal role in water resource system management and feasibility level planning for resource distribution. Considering this importance, a case study has been carried out in the Hancheon basin of Jeju Island where distinctive hydrological characteristics are investigated for continuous storm rainfall and high permeable geological features. The study aims to estimate unit hydrograph parameters, peak runoff and peak time of storm rainfalls based on Clark unit hydrograph method. For analyzing observed runoff, five storm rainfall events were selected randomly from recent years' rainfall and HEC-hydrologic modeling system (HMS) model was used for rainfall-runoff data processing. The simulation results showed that the peak runoff varies from 164 to 548 m3/sec and peak time (onset) varies from 8 to 27 hours. A comprehensive relationship between Clark unit hydrograph parameters (time of concentration and storage coefficient) has also been derived in this study. The optimized values of the two parameters were verified by the analysis of variance (ANOVA) and runoff comparison performance were analyzed by root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) estimation. After statistical analysis of the Clark parameters significance level was found in 5% and runoff performances were found as 3.97 RMSE and 0.99 NSE, respectively. The calibration and validation results indicated strong coherence of unit hydrograph model responses to the actual situation of historical storm runoff events.