• Title/Summary/Keyword: Multidrug-resistance

Search Result 394, Processing Time 0.021 seconds

Secular Trends of Species and Antimicrobial Resistance of Blood Isolates in a Tertiary Medical Center for Ten Years: 2003~2012

  • Shin, Kyeong Seob;Son, Young Il;Kim, Yong Dae;Hong, Seung Bok;Park, Je-Seop;Kim, Sunghyun;Yu, Young-Bin;Kim, Young Kwon
    • Biomedical Science Letters
    • /
    • v.20 no.2
    • /
    • pp.77-84
    • /
    • 2014
  • Periodic analysis of local epidemiologic data of prevalent pathogens of blood culture can provide clinicians with relevant information to guide empirical antibiotic therapy. In this study, we analyzed a pattern of change of causative microorganisms and antimicrobial resistance at a tertiary medical center in Chungcheong province from 2003 to 2012, retrospectively. Of 70,258 blood specimens cultured, 6,063 (8.6%) were positive. Among the positive isolates, 95.9% were aerobic or facultative anaerobic bacteria, 0.1% were anaerobes, and 3.9% were fungi. Coagulase-negative Staphylococci (CoNS) (32.9%), Escherichia coli (16.7%), Staphylococcus aureus (9.1%), Klebsiella pneumoniae (6.4%), and ${\alpha}$-hemolytic Streptococcus (5.9%) were commonly isolated bacteria, and Candida albicans (1.4%) was the most commonly isolated fungi. Enterococcus faecium progressively increased but Streptococcus pneumoniae, Acinetobacter baumannii and Proteus species gradually decreased over a period of 10 years. The multidrug-resistant microorganisms such as methicillin-resistant S. aureus (MRSA), vancomycin-resistant enterococci (VRE), cefotaxime-resistant E. coli, imipenem-resistant Pseudomonas aeruginosa (IRPA) and imipenem-resistant A. baumannii (IRAB), were significantly increased. Therefore, there is a need for a more strict control of antibiotics and a more updated guideline for the treatment of bloodstream infection.

Molecular Characterization of Salmonella Genomic Island 1 in Proteus mirabilis Isolates from Chungcheong Province, Korea

  • Sung, Ji Youn;Kim, Semi;Kwon, GyeCheol;Koo, Sun Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2052-2059
    • /
    • 2017
  • The emergence and dissemination of Salmonella genomic island 1 (SGI1) are strongly associated with the occurrence of multidrug-resistant (MDR) enterobacteria in humans and animals. Diverse SGI1s have been reported among Salmonella enterica and Proteus mirabilis in several countries. We aimed to characterize SGI1 in P. mirabilis isolates from humans and chickens in Chungcheong Province, Korea. A total of 44 P. mirabilis isolates were recovered from humans (n = 20) and chickens (n = 24). Antimicrobial susceptibility was determined by disk diffusion assay. To detect and characterize SGI1s, PCR amplification and PCR mapping experiments were performed. Repetitive extragenic palindromic-PCR (REP-PCR) was performed to assess the clonality of the isolates. The four P. mirabilis strains (16.7%) from chicken harbored a SGI1, whereas none of the isolates from clinical specimens contained SGI1. The SGI1s detected in our study were all confirmed as SGI1-PmABB harboring aminoglycoside-resistant genes (aacCA5 and aadA7). In P. mirabilis isolates, the presence of SGI1-PmABB was significantly correlated with high resistance rates of the isolates to antimicrobial agents, such as gentamicin, streptomycin, and spectinomycin. Moreover, the four SGI1-bearing isolates showed the same REP-PCR patterns and that suggested both horizontal and clonal spread of the isolates. This study is the first attempt to determine SGI1s in P. mirabilis isolates in Korea. We confirmed that P. mirabilis isolates carrying SGI1-PmABB were distributed at poultry farms in Korea. The present study emphasizes the need for continuous monitoring of SGI1s to prevent spreading of the MDR genomic islands among P. mirabilis isolates from humans and animals.

Characteristics of Transmissible CTX-M- and CMY-Type β-Lactamase-Producing Escherichia coli Isolates Collected from Pig and Chicken Farms in South Korea

  • Shin, Seung Won;Jung, Myunghwan;Won, Ho Geun;Belaynehe, Kuastros Mekonnen;Yoon, In Joong;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1716-1723
    • /
    • 2017
  • The rapid dissemination of extended-spectrum ${\beta}$-lactamase (ESBL)-producing Escherichia coli has significantly contributed to public health hazard globally. A total of 281 E. coli strains recovered from pigs and chickens between 2009 and 2015 in South Korea were analyzed for ESBL production. ESBL phenotypes were recognized in 14 E. coli isolates; ten and three ESBL-producing isolates carried only $bla_{CTX-M}$ and $bla_{CMY}$ genes, respectively, and one isolate harbored both genes. The predominant CTX-M and CMY types were CTX-M-15 (n = 8) and CMY-2 (n = 3). We also detected ESBL-producing isolates harboring $bla_{CTX-M-65}$, $bla_{CTX-M-14}$, $bla_{CMY-6}$, $bla_{DHA-1}$, and $bla_{TEM-1}$ genes. All ESBL-producing isolates showed resistance to the extent of the fourth generation cephalosporins, along with multidrug resistance. CTX-M-15-producing isolates showed higher MIC values than CTX-M-14- and CTX-M-65-producing isolates. The $bla_{CTX-M}$ and $bla_{CMY}$ genes have the potential to be transferable. The spreading of $bla_{CMY}$ and $bla_{CTX-M}$ genes was arbitrated mainly via Frep and IncI1 plasmids. Our isolates showed clonal diversity in PFGE analysis. This is the first report of E. coli isolates carrying $bla_{CMY-6}$ in chicken from South Korea. The emergence of CMY-6 ESBLs in a population of poultry suggests that extensive screening with long-term surveillance is necessary to prevent the dissemination of ESBL from chicken to human.

Effects of Hydroxychloroquine Co-administered with Chemotherapeutic Agents on Malignant Glioma Cell Lines : in vitro Study

  • Park, Yong-Sook;Choi, Jae-Young;Chang, Jong-Hee;Park, Yong-Gou;Chang, Jin-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.1
    • /
    • pp.47-53
    • /
    • 2005
  • Objective : Anti-malaria drugs may modulate tumor resistance to chemotherapeutic agents, but it has not been proven effective in the treatment of malignant gliomas. The aim of this study was to determine whether adequate pre-clinical data on co-administration of chemotherapeutic agents with anti-malaria drugs on malignant cell lines could be obtained that would warrant its further potential consideration for use in a clinical trial for malignant gliomas. Methods : Two malignant glioma cell lines [U87MG, T98G] were treated with chemotherapeutic agents alone or with anti-malaria drugs. Cells were incubated with drugs for 4 days. Following the 4-day incubation, drug sensitivity assays were performed using 3-[4,5-dimethyl-2-thiazol-2-yl] 2,5-diphenyltetrazolium bromide [MTT] assay following optimization of experimental conditions for each cell lines and cell viability was calculated. Results : In all of four chemotherapeutic agents[doxorubicin. vincrisitne, nimustine, and cisplatin], the cell viability was found to be markedly decreased when hydroxychloroquine was co-administered on both U87MG and T98G cell lines. The two way analysis of variance[ANOVA] yielded a statistically significant two-sided p-value of 0.0033[doxorubicin], 0.0005[vincrisitne], 0.0007[nimustine], and 0.0003[cisplatin] on U87MG cell lines and 0.0006[doxorubicin], 0.0421[vincrisitne], 0.0317[nimustine], and 0.0001[cisplatin] on T98G cell lines, respectively. However, treatment with chloroquine and primaquine did not induce a decrease in cell viability on both U87MG and T98G cell lines. Conclusion : Our data support further consideration of the use of hydroxychloroquine prior to systemic chemotherapy to maximize its tumoricidal effect for patients with malignant gliomas.

Febrile urinary tract infection in children: changes in epidemiology, etiology, and antibiotic resistance patterns over a decade

  • Suh, Woosuck;Kim, Bi Na;Kang, Hyun Mi;Yang, Eun Ae;Rhim, Jung-Woo;Lee, Kyung-Yil
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.6
    • /
    • pp.293-300
    • /
    • 2021
  • Background: Understanding the epidemiology and prevalence of febrile urinary tract infection (fUTI) in children is important for risk stratification and selecting appropriate urine sample collection candidates to aid in its diagnosis and treatment. Purpose: This study aimed to analyze the epidemiology, etiology, and changes in antibiotic susceptibility patterns of the first fUTI in children. Methods: This retrospective observational cohort study included children younger than 19 years of age who were diagnosed and treated for their first fUTI in 2006-2016. Electronic medical records were analyzed and radiologic images were evaluated. Results: A total of 359 patients (median age, 5.1 months; interquartile range, 3.0-10.5 months) fit the inclusion criteria; of them, 78.0% (n=280) were younger than 12 months old. The male to female ratio was 5.3:1 for patients aged 0-2 months, 2.1:1 for those 3-5 months, and 1.6:1 for those 6-11 months. Beyond 12 months of age, there was a female predominance. Escherichia coli was the leading cause (83.8%), followed by Enterococcus species (6.7%), and Klebsiella pneumoniae (3.6%). Significant yearly increases in the proportions of multidrug-resistant strains (P<0.001) and extended-spectrum beta-lactamase (ESBL) producers (P<0.001) were observed. In patients with vesicoureteral reflux (VUR), the overall recurrence rate was 53.6% (n=15). A significantly higher recurrence rate was observed when the fUTI was caused by an ESBL versus non-ESBL producer (75.0% vs. 30.0%, P=0.03). Conclusion: fUTI was most prevalent in children younger than 12 months of age and showed a female predominance in patients older than 12 months of age. The proportion of ESBL producers causing fUTI is increasing. Carbapenems, rather than noncarbapenems, should be considered for treating fUTI caused by ESBL-producing enteric gram-negative rods to reduce short-term recurrence rates in children with VUR.

Combination of berberine and ciprofloxacin reduces multi-resistant Salmonella strain biofilm formation by depressing mRNA expressions of luxS, rpoE, and ompR

  • Shi, Chenxi;Li, Minmin;Muhammad, Ishfaq;Ma, Xin;Chang, Yicong;Li, Rui;Li, Changwen;He, Jingshan;Liu, Fangping
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.808-816
    • /
    • 2018
  • Bacterial biofilms have been demonstrated to be closely related to clinical infections and contribute to drug resistance. Berberine, which is the main component of Coptis chinensis, has been reported to have efficient antibacterial activity. This study aimed to investigate the potential effect of a combination of berberine with ciprofloxacin (CIP) to inhibit Salmonella biofilm formation and its effect on expressions of related genes (rpoE, luxS, and ompR). The fractional inhibitory concentration (FIC) index of the combination of berberine with CIP is 0.75 showing a synergistic antibacterial effect. The biofilm's adhesion rate and growth curve showed that the multi-resistant Salmonella strain had the potential to form a biofilm relative to that of strain CVCC528, and the antibiofilm effects were in a dose-dependent manner. Biofilm microstructures were rarely observed at $1/2{\times}MIC/FIC$ concentrations (MIC, minimal inhibition concentration), and the combination had a stronger antibiofilm effect than each of the antimicrobial agents used alone at $1/4{\times}FIC$ concentration. LuxS, rpoE, and ompR mRNA expressions were significantly repressed (p< 0.01) at $1/2{\times}MIC/FIC$ concentrations, and the berberine and CIP combination repressed mRNA expressions more strongly at the $1/4{\times}FIC$ concentration. The results indicate that the combination of berberine and CIP has a synergistic effect and is effective in inhibiting Salmonella biofilm formation via repression of luxS, rpoE, and ompR mRNA expressions.

Genotyping and Molecular Characterization of Carbapenem-resistant Acinetobacter baumannii Strains Isolated from Intensive Care Unit Patients

  • Abozahra, Rania;Abdelhamid, Sarah M.;Elsheredy, Amel G.;Abdulwahab, Kawther E.;Baraka, Kholoud
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.239-248
    • /
    • 2021
  • The emergence of multidrug-resistant Acinetobacter baumannii has partly increased treatment failure and patient mortality. Class D β-lactamases is an important mechanism of resistance to beta-lactam antibiotics in this species. This study aimed to investigate the relationship between the presence oxacillinase gene and genetic fingerprints of A. baumannii isolates from the intensive care unit of an Egyptian tertiary care hospital. One hundred and twenty A. baumannii clinical isolates were collected. Multiplex PCR was performed to detect genes encoding oxacillinases (OXA-23, OXA-24, OXA-51, OXA-58 and OXA-143). Molecular typing of all collected isolates was performed using random amplified polymorphic DNA (RAPD)-PCR assay. Out of 120 examined isolates, 92, 88 and 84% were resistant to ertapenem, imipenem and meropenem, respectively. The species-specific, commonly present OXA-51 gene was found in all isolates while OXA-23 showed a high prevalence of 88% of isolates. OXA-24 and OXA-143 genes were detected in 3% and 1% of isolates, respectively. No OXA-58 gene was detected. Five clusters consisting of 19 genotypes were detected using RAPD-PCR. Genotype A was the most prevalent, it was observed in 62% of the isolates followed by genotype B (12%). These results revealed that genotypes A and B are common in the hospital. Results also demonstrate that RAPD-PCR is a rapid and reliable method for studying the clonal similarity among A. baumannii isolated from different clinical specimens.

Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach

  • Md Tahsin Khan;Araf Mahmud;Md. Muzahidul Islam;Mst. Sayedatun Nessa Sumaia;Zeaur Rahim;Kamrul Islam;Asif Iqbal
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.42.1-42.23
    • /
    • 2023
  • Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Tolllike receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.

Characterization of Salmonella species from poultry slaughterhouses in South Korea: carry-over transmission of Salmonella Thompson ST292 in slaughtering process

  • Yewon Cheong;Jun Bong Lee;Se Kye Kim;Jang Won Yoon
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.39.1-39.11
    • /
    • 2024
  • Importance: Salmonella outbreaks linked to poultry meat have been reported continuously worldwide. Therefore, Salmonella contamination of poultry meats in slaughterhouses is one of the critical control points for reducing disease outbreaks in humans. Objective: This study examined the carry-over contamination of Salmonella species through the entire slaughtering process in South Korea. Methods: From 2018 to 2019, 1,097 samples were collected from the nine slaughterhouses distributed nationwide. One hundred and seventeen isolates of Salmonella species were identified using the invA gene-specific polymerase chain reaction, as described previously. The serotype, phylogeny, and antimicrobial resistance of isolates were examined. Results: Among the 117 isolates, 93 were serotyped into Salmonella Mbandaka (n = 36 isolates, 30.8%), Salmonella Thompson (n = 33, 28.2%), and Salmonella Infantis (n = 24, 20.5%). Interestingly, allelic profiling showed that all S. Mbandaka isolates belonged to the lineage of the sequence type (ST) 413, whereas all S. Thompson isolates were ST292. Moreover, almost all S. Thompson isolates (97.0%, 32/33 isolates) belonging to ST292 were multidrug-resistant and possessed the major virulence genes whose products are required for full virulence. Both serotypes were distributed widely throughout the slaughtering process. Pulsed-field gel electrophoretic analysis demonstrated that seven S. Infantis showed 100% identities in their phylogenetic relatedness, indicating that they were sequentially transmitted along the slaughtering processes. Conclusions and Relevance: This study provides more evidence of the carry-over transmission of Salmonella species during the slaughtering processes. ST292 S. Thompson is a potential pathogenic clone of Salmonella species possibly associated with foodborne outbreaks in South Korea.

A Novel Truncated CHAP Modular Endolysin, CHAPSAP26-161, That Lyses Staphylococcus aureus, Acinetobacter baumannii, and Clostridioides difficile, and Exhibits Therapeutic Effects in a Mouse Model of A. baumannii Infection

  • Yoon-Jung Choi;Shukho Kim;Ram Hari Dahal;Jungmin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1718-1726
    • /
    • 2024
  • Development of novel antibacterial agents is imperative due to the increasing threat of antibiotic-resistant pathogens. This study aimed to develop the enhanced antibacterial activity and in-vivo efficacy of a novel truncated endolysin, CHAPSAP26-161, derived from the endolysin LysSAP26, against multidrug-resistant bacteria. CHAPSAP26-161 exhibited higher protein purification efficiency in E. coli and antibacterial activity than LysSAP26. Moreover, CHAPSAP26-161 showed the higher lytic activity against A. baumannii with minimal bactericidal concentrations (MBCs) of 5-10 ㎍/ml, followed by Staphylococcus aureus with MBCs of 10-25 ㎍/ml. Interestingly, CHAPSAP26-161 could lyse anaerobic bacteria, such as Clostridioides difficile, with MBCs of 25-50 ㎍/ml. At pH 4-8 and temperatures of 4℃-45℃, CHAPSAP26-161 maintained antibacterial activity without remarkable difference. The lytic activity of CHAPSAP26-161 was increased with Zn2+. In vivo tests demonstrated the therapeutic effects of CHAPSAP26-161 in murine systemic A. baumannii infection model. In conclusion, CHAPSAP26-161, a truncated endolysin that retains only the CHAP domain from LysSAP26, demonstrated enhanced protein purification efficiency and antibacterial activity compared to LysSAP26. It further displayed broad-spectrum antibacterial effects against S. aureus, A. baumannii, and C. difficile. Our in vitro and in-vivo results of CHAPSAP26-161 highlights its promise as an innovative therapeutic option against those bacteria with multiple antibiotic resistance.