• Title/Summary/Keyword: Multidrug resistance inhibitor

Search Result 28, Processing Time 0.023 seconds

Comparative Modeling Studies of 1-deoxy-D-xylulose 5-phosphate Synthase (MEP pathway) from Mycobacterium Tuberculosis

  • Kothandan, Gugan
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.202-209
    • /
    • 2011
  • Tuberculosis is a major health problem in humans because of its multidrug resistance and discovering new treatments for this disease is urgently required. The synthesis of isoprenoids in Mycobacterium tuberculosis has been reported as an interesting pathway to target. In this context, 2C-methyl-D-erythritol 4-phosphate (MEP) pathway of M. tuberculosis has drawn attention. The MEP pathway begins with the condensation of glyceraldehyde 3-phosphate and pyruvate forming 1-deoxy-D-xylulose 5-phosphate (DXP) which is catalyzed by 1-deoxy-D-xylulose 5-phosphate synthase (DXS). As there is no X-ray structure was reported for this target, comparative modeling was used to generate the three dimensional structure. The structure was further validated by PROCHECK, VERIFY-3D, PROSA, ERRAT and WHATIF. Molecular docking studies was performed with the substrate (Thiamine pyrophosphate) and the reported inhibitor 2-methyl-3-(4-fluorophenyl)-5-(4-methoxy-phenyl)-4H-pyrazolol[1,5-a]pyrimidin-7-one) against the developed model to identify the crucial residues in the active site. This study may further be useful to provide structure based drug design.

Antimicrobial Flavonoid, 3,6-Dihydroxyflavone, Have Dual Inhibitory Activity against KAS III and KAS I

  • Lee, Jee-Young;Lee, Eun-Jung;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3219-3222
    • /
    • 2011
  • Three types of ${\beta}$-ketoacyl acyl carrier protein synthase (KAS) are important for overcoming the bacterial resistance problem. Recently, we reported the discovery of a antimicrobial flavonoid, YKAF01 (3,6-dihydroxyflavone), which exhibits antibacterial activity against Gram-positive bacteria through inhibition of ${\beta}$-ketoacyl acyl carrier protein synthase III (KAS III). In this report, we suggested that YKAF01 can be an inhibitor ${\beta}$-ketoacyl acyl carrier protein synthase I (KAS I) with dual inhibitory activity for KAS I as well as KAS III. KAS I is related to the elongation of unsaturated fatty acids in bacterial fatty acid synthesis and can be a good therapeutic target of designing novel antibiotics. We performed docking study of Escherichia coli KAS I (ecKAS I) and YKAF01, and determined their binding model. YKAF01 binds to KAS I with high binding affinity ($2.12{\times}10^6$) and exhibited an antimicrobial activity against the multidrug-resistant E. coli with minimal inhibitory concentration (MIC) value of 512 ${\mu}g$/mL. Further optimization of this compound will be carried out to improve its antimicrobial activity and membrane permeability against bacterial cell membrane.

Treatment of Multidrug-resistant Pseudomonas aeruginosa Bacteremia in a Immunocompromised Child With Ceftolozane-tazobactam (면역저하 소아에서 발생한 다제내성 녹농균 균혈증을 ceftolozane-tazobactam으로 성공적으로 치료한 증례보고)

  • Hyesun Yu;Areum Shin;Doo Ri Kim;Jaeyoung Choi;Hee Young Ju;Joongbum Cho;Cheol-In Kang;Yae-Jean Kim
    • Pediatric Infection and Vaccine
    • /
    • v.30 no.1
    • /
    • pp.47-54
    • /
    • 2023
  • With the widespread use of broad-spectrum antibiotics in clinical practice, the emergence of multidrug-resistant (MDR) gram-negative bacteria has become a global problem. The MDR Pseudomonas aeruginosa infection is especially difficult to treat and increases mortality in critically ill patients. Ceftolozane-tazobactam (ZerbaxaTM) is a fifth-generation cephalosporin and beta-lactamase inhibitor that has proved to be effective for treating complicated urinary tract infections and complicated intra-abdominal infections caused by MDR P. aeruginosa. Herein, we report the first case of pediatric hematologic cancer in Korea that was successfully treated for MDR P. aeruginosa bacteremia with Ceftolozane-tazobactam.

Synergistic antitumor activity of ST1571 and camptothecin in human cancer cells (Camptothecin 에 의한 ST1571 의 항암 활성 증강)

  • Kim, Mi-Ju;Lee, Sang-Min;Bae, Jae-Ho;Chung, Byung-Seon;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.748-755
    • /
    • 2007
  • The in vitro activity of ST1571, an inhibitor of the Abl group of protein-tyrosine kinases, alone or in combination with camptothecin (CPT), a specific topoisomerase I inhibitor, was evaluated against human cancer cells with different metastatic capacity and drug resistance potency. These cell lines showed different sensitivity to ST157 on growth inhibition, and the expression of DNA-dependent protein kinase (DNA-PK), which interacts constitutively with c-Abl, was significantly decreased in drug sensitive CEM and MCF-7 cells and poorly metastatic PC3 and KMl2 cells as compared with that of multidrug resistant CEM/MDR and MCF-7/MDR cells and highly metastatic PC3-MM2 and KM/L4a cells, respectively. These results suggest differential modulation of DNA-PK by ST1571 treatment in drug resistance and metastatic degree dependent manner. We showed that CPT as well as ST1571 significantly inhibits the expression of DNA-PK. The combined treatment with ST15fl and CPT revealed synergistic effect, and the effect was accompanied by inhibition of cell proliferation due to significant reduced expression of DNA-PK components, which resulted in CPT sensitizes human cancer cells resistant to ST1571. Therefore, the results of our study suggested that the suppression of DNA-PK using combination of ST1571 and CPT could be a novel molecular target for against drugresistant and metastatic cancer cells.

Oncogenic Ras downregulates mdr1b expression through generation of reactive oxygen species

  • Jun, Semo;Kim, Seok Won;Kim, Byeol;Chang, In-Youb;Park, Seon-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.267-276
    • /
    • 2020
  • T In the present study, we investigated the effect of oncogenic H-Ras on rat mdr1b expression in NIH3T3 cells. The constitutive expression of H-RasV12 was found to downregulate the mdr1b promoter activity and mdr1b mRNA expression. The doxorubicin-induced mdr1b promoter activity of the H-RasV12 expressing NIH3T3 cells was markedly lower than that of control NIH3T3 cells. Additionally, there is a positive correlation between the level of H-RasV12 expression and a sensitivity to doxorubicin toxicity. To examine the detailed mechanism of H-RasV12-mediated down-regulation of mdr1b expression, antioxidant N-acetylcysteine (NAC) and NADPH oxidase inhibitor diphenylene iodonium (DPI) were used. Pretreating cells with either NAC or DPI significantly enhanced the oncogenic H-Ras-mediated down-regulation of mdr1b expression and markedly prevented doxorubicin-induced cell death. Moreover, NAC and DPI treatment led to a decrease in ERK activity, and the ERK inhibitors PD98059 or U0126 enhanced the mdr1b-Luc activity of H-RasV12-NIH3T3 and reduced doxorubicin-induced apoptosis. These data suggest that RasV12 expression could downregulate mdr1b expression through intracellular reactive oxygen species (ROS) production, and ERK activation induced by ROS, is at least in part, contributed to the downregulation of mdr1b expression.

Anti-CSC Effects in Human Esophageal Squamous Cell Carcinomas and Eca109/9706 Cells Induced by Nanoliposomal Quercetin Alone or Combined with CD 133 Antiserum

  • Zheng, Nai-Gang;Mo, Sai-Jun;Li, Jin-Ping;Wu, Jing-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8679-8684
    • /
    • 2014
  • CD133 was recently reported to be a cancer stem cell and prognostic marker. Quercetin is considered as a potential chemopreventive agent due to its involvement in suppression of oxidative stress, proliferation and metastasis. In this study, the expression of CD133/CD44 in esophageal carcinomas and Eca109/9706 cells was explored. In immunoflurorescence the locations of $CD133^+$ and multidrug resistance 1 $(MDR1)^+$ in the same E-cancer cells were coincident, mainly in cytomembranes. In esophageal squamous cell carcinomas detected by double/single immunocytochemistry, small $CD133^+$ cells were located in the basal layer of stratified squamous epithelium, determined as CSLC (cancer stem like cells); $CD44^+$ surrounding the cells appeared in diffuse pattern, and the larger $CD44^+$ (hi) cells were mainly located in the prickle cell layer of the epithelium, as progenitor cells. In E-cancer cells exposed to nanoliposomal quercetin (nLQ with cytomembrane permeability), down-regulation of NF-${\kappa}Bp65$, histone deacetylase 1 (HDAC1) and cyclin D1 and up-regulation of caspase-3 were shown by immunoblotting, and attenuated HDAC1 with nuclear translocation and promoted E-cadherin expression were demonstrated by immunocytochemistry. In particular, enhanced E-cadherin expression reflected the reversed epithelial mesenchymal transition (EMT) capacity of nLQ, acting as cancer attenuator/preventive agent. nLQ acting as an HDAC inhibitor induced apoptotic cells detected by TUNEL assay mediated via HDAC-NF-${\kappa}B$ signaling. Apoptotic effects of liposomal quercetin (LQ, with cytomembrane-philia) combined with CD133 antiserum were also detected by CD133 immunocytochemistry combined with TUNEL assay. The combination could induce greater apoptotic effects than nLQ induced alone, suggesting a novel anti-CSC treatment strategy.

Screening of Chemosensitizer Candidates Using Natural Extracts (천연 추출물을 이용한 화학감작제 후보물질 탐색)

  • Ahn, Hee-Jeong;Kim, Ji-Young;Lee, Choong-Hwan;Song, Im-Sook;Liu, Kwang-Hyeon
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1244-1248
    • /
    • 2008
  • P-glycoprotein (P-gp) is a very important drug transporter, which plays an important role in drug disposition and represents an additional mechanism for the development of multidrug resistance. Flavonoids, a major class of natural compounds widely present in foods and herbal products, have been shown to be P-gp inhibitors. The objective of the present study was to identify new chemosensitizer candidates through the screening of various herbal extracts. The inhibitory effects of herbal extracts on P-gp activity were assessed by measuring accumulation of calcein AM using P-gp overexpressed L-MDR1 cells. Curcuma longa showed the most potent inhibition on P-gp function. The inhibitory potential of P-gp was in the order: Curcuma longa > Curcuma aromatica > Ageratum conizoids > Zanthoxylum planispinum > Zedoariae rhizome > Rakta chandan > Dalbergia odorifera > Caesalpinia Sappan > Aloe ferox. To identify individual constituents with inhibitory activity, the herbal extracts were analyzed by LC/MS/MS. Several flavonoids such as curcumin, a well-known P-gp inhibitor, were identified through mass spectral library search. These in vitro data indicate that herbal extracts contain constituents that can potently inhibit the activities of P-gp and suggest that these herbal extracts should be examined for potential chemosensitizer in vivo.

Reversal of Multidrug Resistance with KR-30035: Evaluated with Biodistribution of Tc-99m MIBI in Nude Mice Bearing Human Tumor Xenografts (이종이식된 인체종양에서 KR-30035가 Tc-99m MIBI체내 분포에 미치는 영향으로 평가한 다약제내성 역전가능성)

  • Kim, Jung-Kyun;Lee, Byung-Ho;Choi, Sang-Woon;Yoo, Sung-Eun;Lee, Sang-Woo;Chun, Kyung-Ah;Ahn, Byeong-Cheol;Park, Jae-Young;Suh, Jang-Soo;Lee, Kyu-Bo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.3
    • /
    • pp.168-184
    • /
    • 2001
  • Purpose: KR-30035 (KR), a new MDR reversing agent, has been found to produce a similar degree of increased Tc-99m MIBI uptake in cultured tumor cells over-expressing mdr1 mRNA compared to verapamil (VP), with less cardiovascular effects. We assessed the MDR-reversing ability of KR in vivo, and effects of various doses of KR on MIBI uptake un nude mice hearing P-glycoprotein (P-gp) positive (+) and P-gp negative (-) human tumor xenografts. Methods: P-gp (+) HCT15/CL02 colorectal and P-gp (-) A549 non-small cell cancer cells were inoculated in each flank of 120 nude mice (20 mice ${\times}$ 6 groups). Group 1 (Gr1) mice received 10mg/kg KR i.p. 3 times $({\times}3)$; Gr2, 10mg/kg VP i.p. ${\times}3$; Gr3, 10mg/kg KR i.p. ${\times}2$ + 25mg/kg KR i.p. ${\times}1$; Gr4, 10mg/kg KR i.p. ${\times}2$ + 50mg/kg i.p. ${\times}1$; Gr5, 10mg/kg KR i.p. ${\times}2$ + 25mg/kg KR i.v. ${\times}1$, GrC, controls. The mice were then injected with Tc-99m MIBI and sacrificed after 10 min, 30 min, 90 min and 240 min. Tumor uptake of MIBI (TU) in each group was compared. Results: TU in P-gp (+) and (-) tumors were both higher in Gr1 than Gr2. Washout rate between the 10 min and 4 hours was lower in Gr5 of P-gp (+) cell(0.93) than the control. Percentage increases in TU were higher in P-gp (+) than P-gp (-) tumors with all KR doses. Pgp (+) TU were highest at 10 mon (173% of GrC) and persisted up to 240 min (144%) in Gr3. Larger doses of KR resulted in a lesser degree of increase in P-gp (+) TU at 10 min (130% in Gr4 and 117% un Gr5) and 30 min (178%, 129%), but TU increased by time up to 240 min (177%, 196%). Heart and lung uptakes were markedly increased in Gr4 and Gr5 at 10 and 30 min, likely due to cardiovascular effects. No mice died. Conclusion: These data further suggest that KR that has significantly lower cardiovascular toxicity than verapamil can be used as an active inhibitor of MDR. Even a relatively low dose of KR significantly increased Tc-99m MIBI uptake in P-gp (+) tumors in vivo.

  • PDF