• Title/Summary/Keyword: Multidrug Resistance (MDR)

Search Result 173, Processing Time 0.057 seconds

Synthesis and Biological Evaluation of Phenoxy-N-phenylacetamide Derivatives as Novel P-glycoprotein Inhibitors

  • Lee, Kyeong;Roh, Sang-Hee;Xia, Yan;Kang, Keon-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3666-3674
    • /
    • 2011
  • Overexpression of P-glycoprotein (Pgp) is associated with multidrug resistance (MDR) of tumor cells to a number of chemotherapeutic drugs. Pgp inhibitors have been shown to effectively reverse Pgp-mediated MDR. We prepared a series of phenoxy-N-phenylacetamide derivatives and tested for their ability to inhibit Pgp as potential MDR reversing agents, using a Pgp over-expressing MCF-7/ADR cell line. Some of the synthesized compounds exhibited moderate to potent reversal activity. Of note, compound 4o showed a 3.0-fold increased inhibition compared with verapamil, a well-known Pgp inhibitor. In addition, co-treatment of the representative compound 4o and a substrate anticancer agent doxorubicin resulted in a remarkable increase in doxorubicin's antitumor effect and inhibition of DNA synthesis in the MCF-7/ADR cell line. Taken together, these findings suggest that compound 4o could be a useful lead for development of a novel Pgp inhibitor for treatment of MDR.

Curcumin-loaded PLGA Nanoparticles Conjugated with Anti-P-glycoprotein Antibody to Overcome Multidrug Resistance

  • Punfa, Wanisa;Suzuki, Shugo;Pitchakarn, Pornsiri;Yodkeeree, Supachai;Naiki, Taku;Takahashi, Satoru;Limtrakul, Pornngarm
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9249-9258
    • /
    • 2014
  • Background: The encapsulation of curcumin (Cur) in polylactic-co-glycolic acid (PLGA) nanoparticles (Cur-NPs) was designed to improve its solubility and stability. Conjugation of the Cur-NPs with anti-P-glycoprotein (P-gp) antibody (Cur-NPs-APgp) may increase their targeting to P-gp, which is highly expressed in multidrugresistance (MDR) cancer cells. This study determined whether Cur-NPs-APgp could overcome MDR in a human cervical cancer model (KB-V1 cells) in vitro and in vivo. Materials and Methods: First, we determined the MDR-reversing property of Cur in P-gp-overexpressing KB-V1 cells in vitro and in vivo. Cur-NPs and Cur-NPs-APgp, in the range 150-180 nm, were constructed and subjected to an in vivo pharmacokinetic study compared with Cur. The in vitro and in vivo MDR-reversing properties of Cur-NPs and Cur-NPs-APgp were then investigated. Moreover, the stability of the NPs was determined in various solutions. Results: The combined treatment of paclitaxel (PTX) with Cur dramatically decreased cell viability and tumor growth compared to PTX treatment alone. After intravenous injection, Cur-NPs-APgp and Cur-NPs could be detected in the serum up to 60 and 120 min later, respectively, whereas Cur was not detected after 30 min. Pretreatment with Cur-NPs-APgp, but not with NPs or Cur-NPs, could enhance PTX sensitivity both in vitro and in vivo. The constructed NPs remained a consistent size, proving their stability in various solutions. Conclusions: Our functional Cur-NPs-APgp may be a suitable candidate for application in a drug delivery system for overcoming drug resistance. The further development of Cur-NPs-APgp may be beneficial to cancer patients by leading to its use as either as a MDR modulator or as an anticancer drug.

Hypoxia Induced Multidrug Resistance of Laryngeal Cancer Cells via Hypoxia-inducible Factor-1α

  • Li, Da-Wei;Dong, Pin;Wang, Fei;Chen, Xin-Wei;Xu, Cheng-Zhi;Zhou, Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4853-4858
    • /
    • 2013
  • Objectives: To investigate whether hypoxia has an effect on regulation of multidrug resistance (MDR) to chemotherapeutic drugs in laryngeal carcinoma cells and explore the role of hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Methods: Laryngeal cancer cells were cultured under normoxic and hypoxic conditions. The sensitivity of the cells to multiple drugs and levels of apoptosis induced by paclitaxel were determined by MTT assay and annexin-V/propidium iodide staining analysis, respectively. HIF-$1{\alpha}$ expression was blocked by RNA interference. The expression of HIF-$1{\alpha}$ gene was detected by real-time quantitative RT-PCR and Western blotting. The value of fluorescence intensity of intracellular adriamycin accumulation and retention in cells was evaluated by flow cytometry. Results: The sensitivity to multiple chemotherapy agents and induction of apoptosis by paclitaxel could be reduced by hypoxia (P<0.05). A the same time, the adriamycin releasing index of cells was increased (P<0.05). However, resistance acquisition subject to hypoxia in vitro was suppressed by down-regulating HIF-$1{\alpha}$ expression. Conclusion: HIF-$1{\alpha}$ could be considered as a key regulator for mediating hypoxia-induced MDR in laryngeal cancer cells via inhibition of drug-induced apoptosis and decrease in intracellular drug accumulation.

Whole genome sequencing analysis on antibiotic-resistant Escherichia coli isolated from pig farms in Banten Province, Indonesia

  • Hadri Latif;Debby Fadhilah Pazra;Chaerul Basri;I Wayan Teguh Wibawan;Puji Rahayu
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.44.1-44.13
    • /
    • 2024
  • Importance: The emergence and rapid increase in the incidence of multidrug-resistant (MDR) bacteria in pig farms has become a serious concern and reduced the choice of effective antibiotics. Objective: This study analyzed the phylogenetics and diversity of antibiotic resistance genes (ARGs) and molecularly identified the source of ARGs in antibiotic-resistant Escherichia coli isolated from pig farms in Banten Province, Indonesia. Methods: Forty-four antibiotic-resistant E. coli isolates from fecal samples from 44 pig farms in Banten Province, Indonesia, were used as samples. The samples were categorized into 14 clusters. Sequencing was performed using the Oxford Nanopore Technologies MinION platform, with barcoding before sequencing with Nanopore Rapid sequencing gDNA-barcoding (SQK-RBK110.96) according to manufacturing procedures. ARG detection was conducted using ResFinder, and the plasmid replicon was determined using PlasmidFinder. Results: Three phylogenetic leaves of E. coli were identified in the pig farming cluster in Banten Province. The E. coli isolates exhibited potential resistance to nine classes of antibiotics. Fifty-one ARGs were identified across all isolates, with each cluster carrying a minimum of 10 ARGs. The ant(3'')-Ia and qnrS1 genes were present in all isolates. ARGs in the E. coli pig farming cluster originated mainly from plasmids, accounting for an average of 89.4%. Conclusions and Relevance: The elevated potential for MDR events, coupled with the dominance of ARGs originating from plasmids, increases the risk of ARG spread among bacterial populations in animals, humans, and the environment.

Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Nasal Specimens: Overcoming MRSA with Silver Nanoparticles and Their Applications

  • Aly E. Abo-Amer;Sanaa M. F. Gad El-Rab;Eman M. Halawani;Ameen M. Niaz;Mohammed S. Bamaga
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1537-1546
    • /
    • 2022
  • Staphylococcus aureus is a cause of high mortality in humans and therefore it is necessary to prevent its transmission and reduce infections. Our goals in this research were to investigate the frequency of methicillin-resistant S. aureus (MRSA) in Taif, Saudi Arabia, and assess the relationship between the phenotypic antimicrobial sensitivity patterns and the genes responsible for resistance. In addition, we examined the antimicrobial efficiency and application of silver nanoparticles (AgNPs) against MRSA isolates. Seventy-two nasal swabs were taken from patients; MRSA was cultivated on Mannitol Salt Agar supplemented with methicillin, and 16S rRNA sequencing was conducted in addition to morphological and biochemical identification. Specific resistance genes such as ermAC, aacA-aphD, tetKM, vatABC and mecA were PCR-amplified and resistance plasmids were also investigated. The MRSA incidence was ~49 % among the 72 S. aureus isolates and all MRSA strains were resistant to oxacillin, penicillin, and cefoxitin. However, vancomycin, linezolid, teicoplanin, mupirocin, and rifampicin were effective against 100% of MRSA strains. About 61% of MRSA strains exhibited multidrug resistance and were resistant to 3-12 antimicrobial medications (MDR). Methicillin resistance gene mecA was presented in all MDR-MRSA strains. Most MDR-MRSA contained a plasmid of > 10 kb. To overcome bacterial resistance, AgNPs were applied and displayed high antimicrobial activity and synergistic effect with penicillin. Our findings may help establish programs to control bacterial spread in communities as AgNPs appeared to exert a synergistic effect with penicillin to control bacterial resistance.

Treatment Results of Multidrug Resistant Tuberculosis in a University Hospital in Korea (다제내성 결핵의 치료 성적)

  • Yum, Ho-Kee;Song, Yeong-Su;Choi, Sao-Jean;Lee, Bong-Choon;Kim, Dong-Soon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.6
    • /
    • pp.862-870
    • /
    • 1996
  • Background : Multidrug-resistant tuberculosis(MDR-Tb) has been increased not only in Asia but also in Western society, which may cause public health problems and reduce the efficacy of treatment of tuberculosis. In Western society HIV infection is believed to do a central role in increasing incidence of MDR tuberculosis, but MDR-Tb in Korea may be somewhat different about clinical features, underlying disorders, and prognosis. Goble et al reponed that overall treatment failure rate in MDR-Tb including resistance to isoniazid(INH) and rifampin (RFP) was 44 %. The aim of this study is to find the treatment result in Korea and the factors determining the prognosis. Methods: A retrospective study of pulmonary tuberculosis cultured M. tuberculosis from sputum or bronchial washing fluid between 1986 through 1992 was conducted in the Seoul Paik Hospital, Inje University. We reviewed clinical courses of 141 patients, who had a tuberculosis with resistance to 2 or more drugs including isoniazid(INH) and rifampin(RFP). One hundred and 4 patients of 141 patients had completed treatment and followed up for more than one year. Results: Of 104 (mean age $43.6{\pm}16.7$, M: F=63 : 41) patients with sufficient follow-up data, 73(84.6%) patients responded which is defined as negative Sputum cultures for at least 3 consecutive months. Seven patients(6.7%) had a failure in negative conversion and 9(8.7%) of the patients who initially responded relapsed. Overall treatment failure rate was 15.4%, Patients who were treated for less than 12 months had a higher relapse rate(12.3%) than 18 months(4.9%). And there was a statistically significant correlation between the relapse rate and the number of drugs to which isolates wera resistant(p<0.05). Conclusion : The treatment failure rate of MDR-Tb in Korea was lower than previous studies in western Country and the major determining factor of prognosis was the number of resistant drugs to M. tuberculosis at drug sensitivity test. For reducing the relapse rate, we recommend more than 12 months of treatment for MDR tuberculosis.

  • PDF

Oncogenic Ras downregulates mdr1b expression through generation of reactive oxygen species

  • Jun, Semo;Kim, Seok Won;Kim, Byeol;Chang, In-Youb;Park, Seon-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.267-276
    • /
    • 2020
  • T In the present study, we investigated the effect of oncogenic H-Ras on rat mdr1b expression in NIH3T3 cells. The constitutive expression of H-RasV12 was found to downregulate the mdr1b promoter activity and mdr1b mRNA expression. The doxorubicin-induced mdr1b promoter activity of the H-RasV12 expressing NIH3T3 cells was markedly lower than that of control NIH3T3 cells. Additionally, there is a positive correlation between the level of H-RasV12 expression and a sensitivity to doxorubicin toxicity. To examine the detailed mechanism of H-RasV12-mediated down-regulation of mdr1b expression, antioxidant N-acetylcysteine (NAC) and NADPH oxidase inhibitor diphenylene iodonium (DPI) were used. Pretreating cells with either NAC or DPI significantly enhanced the oncogenic H-Ras-mediated down-regulation of mdr1b expression and markedly prevented doxorubicin-induced cell death. Moreover, NAC and DPI treatment led to a decrease in ERK activity, and the ERK inhibitors PD98059 or U0126 enhanced the mdr1b-Luc activity of H-RasV12-NIH3T3 and reduced doxorubicin-induced apoptosis. These data suggest that RasV12 expression could downregulate mdr1b expression through intracellular reactive oxygen species (ROS) production, and ERK activation induced by ROS, is at least in part, contributed to the downregulation of mdr1b expression.

The Evolving Epidemiology of Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Strains Isolated from Adults in Crete, Greece, 2009-2016

  • Maraki, Sofia;Mavromanolaki, Viktoria Eirini;Stafylaki, Dimitra;Hamilos, George;Samonis, George
    • Infection and chemotherapy
    • /
    • v.50 no.4
    • /
    • pp.328-339
    • /
    • 2018
  • Background: Pneumococcal disease is a major cause of morbidity and mortality worldwide, especially in patients with comorbidities and advanced age. This study evaluated trends in epidemiology of adult pneumococcal disease in Crete, Greece, by identifying serotype distribution and antimicrobial resistance of consecutive Streptococcus pneumoniae strains isolated from adults during an 8-year time period (2009-2016) and the indirect effect of the infant pneumococcal higher-valent conjugate vaccines 10-valent pneumococcal conjugate vaccine (PCV10) and 13-valent pneumococcal conjugate vaccine (PCV13). Materials and Methods: Antimicrobial susceptibility was performed by E-test and serotyping by Quellung reaction. Multidrug resistance (MDR) was defined as non-susceptibility to penicillin (PNSP) combined with resistance to ${\geq}2$ non-${\beta}$-lactam antimicrobials. Results: A total of 135 S. pneumoniae strains were isolated from adults during the study period. Twenty-one serotypes were identified with 17F, 15A, 3, 19A, and 11A, being the most common. The coverage rates of PCV10, and PCV13 were 17.8% and 37.8%, respectively. PCV13 serotypes decreased significantly from 68.4% in 2009 to 8.3% in 2016 (P = 0.002). The most important emerging non-PCV13 serotypes were 17F, 15A, and 11A, with 15A being strongly associated with antimicrobial resistance and MDR. Among all study isolates, penicillin-resistant and MDR strains represented 7.4% and 14.1%, respectively. Predominant PNSP serotypes were 19A (21.7%), 11A (17.4%), and 15A (17.4%). Erythromycin, clindamycin, tetracycline, trimethoprim-sulfamethoxazole, and levofloxacin resistant rates were 30.4%, 15.6%, 16.3%, 16.3%, and 1.5%, respectively. Conclusion: Although pneumococcal disease continues to be a health burden in adults in Crete, our study reveals a herd protection effect of the infant pneumococcal higher-valent conjugate vaccination. Surveillance of changes in serotype distribution and antimicrobial resistance among pneumococcal isolates are necessary to guide optimal prevention and treatment strategies.

Phosphorylation of rpS3 by Lyn increases translation of Multi-Drug Resistance (MDR1) gene

  • Woo Sung Ahn;Hag Dong Kim;Tae Sung Kim;Myoung Jin Kwak;Yong Jun Park;Joon Kim
    • BMB Reports
    • /
    • v.56 no.5
    • /
    • pp.302-307
    • /
    • 2023
  • Lyn, a tyrosine kinase that is activated by double-stranded DNA-damaging agents, is involved in various signaling pathways, such as proliferation, apoptosis, and DNA repair. Ribosomal protein S3 (RpS3) is involved in protein biosynthesis as a component of the ribosome complex and possesses endonuclease activity to repair damaged DNA. Herein, we demonstrated that rpS3 and Lyn interact with each other, and the phosphorylation of rpS3 by Lyn, causing ribosome heterogeneity, upregulates the translation of p-glycoprotein, which is a gene product of multidrug resistance gene 1. In addition, we found that two different regions of the rpS3 protein are associated with the SH1 and SH3 domains of Lyn. An in vitro immunocomplex kinase assay indicated that the rpS3 protein acts as a substrate for Lyn, which phosphorylates the Y167 residue of rpS3. Furthermore, by adding various kinase inhibitors, we confirmed that the phosphorylation status of rpS3 was regulated by both Lyn and doxorubicin, and the phosphorylation of rpS3 by Lyn increased drug resistance in cells by upregulating p-glycoprotein translation.

Pediatric tuberculosis and drug resistance (소아 결핵과 약제 내성)

  • Kim, Yae-Jean
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.5
    • /
    • pp.529-537
    • /
    • 2009
  • Drug-resistant tuberculosis in children has important implications for both the patients and tuberculosis control programs. In Korea, among all new patients, the isoniazid resistance rate was 9.9% and multidrug-resistant tuberculosis rate was 2.7% in 2004 (in patients aged 10-19 yr, the multidrug-resistant tuberculosis rate reached 2.1%). Tuberculosis in pediatric patients is difficult to diagnose because many children have nonspecific clinical signs and the detection rates of acid-fast bacilli smears and cultures are low. Therefore, every effort should be made to identify adult sources and obtain information on drug susceptibility because symptomatic adult patients have a higher chance of culture positivity and drug-susceptibility patterns are the same in most adult-child pair patients. Korean children are at significant risk of drug-resistant tuberculosis. As the isoniazid resistance rate is greater than 4% among the new cases in Korea, a four-drug regimen should be considered for initial treatment of children with active tuberculosis, unless drug-susceptibility test results are available. Treatment of drug-resistant tuberculosis in children is challenging and there are only few available data. Tuberculosis control programs should be continuous with specific focus on pediatric populations because they can serve as reservoirs for future active cases. Further studies are needed regarding treatment of drug-resistant tuberculosis in children.