• Title/Summary/Keyword: Multidimensional Scaling Analysis

Search Result 269, Processing Time 0.028 seconds

UNDERSTANDING SERVICE QUALITY: A MULTIDIMENSIONAL SCALING APPROACH

  • Lee, Dong-Won;Kim, Youn-Sung
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.3
    • /
    • pp.68-80
    • /
    • 2004
  • This paper purports to uncover the underlying attributes used by customers to gauge service quality. Data was collected by administering questionnaires to 50 respondents and then analyzed by using Multidimensional Scaling methodology. The findings indicate that there are two primary dimensions to service quality. This analysis helped determine us two alternatives to naming the dimensions. Experience properties of service and Price value of the service, or Responsiveness of service provider employees and Reliability of service providers.

UNDERSTANDING SERVICE QUALITY: A MULTIDIMENSIONAL SCALING APPROACH

  • Lee Dongwon;Kim Youn Sung
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.639-645
    • /
    • 2004
  • This paper purports to uncover the underlying attributes used by customers to gauge service quality. Data was collected by administering questionnaires to 50 respondents and then analyzed by using Multidimensional Scaling methodology. The findings indicate that there are two primary dimensions to service quality. A considerable analysis helped determine two alternatives to naming the dimensions: Experience properties of service and Price value of the service, or Responsiveness of service provider employees and Reliability of service providers.

  • PDF

Improved Multidimensional Scaling Techniques Considering Cluster Analysis: Cluster-oriented Scaling (클러스터링을 고려한 다차원척도법의 개선: 군집 지향 척도법)

  • Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.2
    • /
    • pp.45-70
    • /
    • 2012
  • There have been many methods and algorithms proposed for multidimensional scaling to mapping the relationships between data objects into low dimensional space. But traditional techniques, such as PROXSCAL or ALSCAL, were found not effective for visualizing the proximities between objects and the structure of clusters of large data sets have more than 50 objects. The CLUSCAL(CLUster-oriented SCALing) technique introduced in this paper differs from them especially in that it uses cluster structure of input data set. The CLUSCAL procedure was tested and evaluated on two data sets, one is 50 authors co-citation data and the other is 85 words co-occurrence data. The results can be regarded as promising the usefulness of CLUSCAL method especially in identifying clusters on MDS maps.

The Comparison of Singular Value Decomposition and Spectral Decomposition

  • Shin, Yang-Gyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1135-1143
    • /
    • 2007
  • The singular value decomposition and the spectral decomposition are the useful methods in the area of matrix computation for multivariate techniques such as principal component analysis and multidimensional scaling. These techniques aim to find a simpler geometric structure for the data points. The singular value decomposition and the spectral decomposition are the methods being used in these techniques for this purpose. In this paper, the singular value decomposition and the spectral decomposition are compared.

  • PDF

Non-parametric approach for the grouped dissimilarities using the multidimensional scaling and analysis of distance (다차원척도법과 거리분석을 활용한 그룹화된 비유사성에 대한 비모수적 접근법)

  • Nam, Seungchan;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.567-578
    • /
    • 2017
  • Grouped multivariate data can be tested for differences between two or more groups using multivariate analysis of variance (MANOVA). However, this method cannot be used if several assumptions of MANOVA are violated. In this case, multidimensional scaling (MDS) and analysis of distance (AOD) can be applied to grouped dissimilarities based on the various distances. A permutation test is a non-parametric method that can also be used to test differences between groups. MDS is used to calculate the coordinates of observations from dissimilarities and AOD is useful for finding group structure using the coordinates. In particular, AOD is mathematically associated with MANOVA if using the Euclidean distance when computing dissimilarities. In this paper, we study the between and within group structure by applying MDS and AOD to the grouped dissimilarities. In addition, we propose a new test statistic using the group structure for the permutation test. Finally, we investigate the relationship between AOD and MANOVA from dissimilarities based on the Euclidean distance.

Multidimensional Scaling of Asymmetric Distance Matrices

  • Huh, Myung-Hoe;Lee, Yong-Goo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.4
    • /
    • pp.613-620
    • /
    • 2012
  • In most cases of multidimensional scaling(MDS), the distances or dissimilarities among units are assumed to be symmetric. Thus, it is not an easy task to deal with asymmetric distances. Asymmetric MDS developed so far face difficulties in the interpretation of results. This study proposes a much simpler asymmetric MDS, that utilizes the notion of "altitude". The analogy arises in mountaineering: It is easier (more difficult) to move from the higher (lower) point to the lower (higher). The idea is formulated as a quantification problem, in which the disparity of distances is maximally related to the altitude difference. The proposed method is demonstrated in three examples, in which the altitudes are visualized by rainbow colors to ease the interpretability of users.

Social media comparative analysis based on multidimensional scaling

  • Lee, Hanjun;Suh, Yongmoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.665-676
    • /
    • 2014
  • As social media draws attention as a business tool, organizations, large or small, are trying to exploit social media in their business. However, lack of understanding the characteristics of each social media led them to develop a naive strategy for dealing with social media. Thus, this study aims to deepen the understanding by comparatively analyzing how social media users perceive (the image of) each social media. Facebook, Twitter, YouTube, Blogs, Communities and Cyworld were chosen for our study and data from 132 respondents were analyzed using multidimensional scaling technique. The results show that there are meaningful differences in users' perception of social media attributes, which are grouped into four; information feature, motivation, promotion tool, usability. It is also analyzed whether such differences can be found between male and female users. (Such differences are also analyzed in both male and female users' perceptions.) Further, we discuss some implications of the research results for both practitioners and researchers.

Constructing Strategic Management Plan for University Foodservice Using Conjoint Analysis and Multidimensional Scaling (컨조인트 분석과 다차원척도법을 이용한 대학급식소의 전략적 운영 방안 모색)

  • Yang, Il-Sun;Shin, Seo-Young;Lee, Hae-Young;Lee, So-Jung;Chae, In-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2000
  • This study is designed to 1) understand customers' choice behavior and preference of foodservices in campus and 2) provide recommendation on management strategies for university foodservice manager. Individual interview and focus group interview were used to identify important selection attributes. The questionnaire was developed and distributed to 480 Yonsei university students and statistical data analysis was completed using SPSS WIN/7.5 for descriptive analysis, multidimensional scaling and conjoint analysis. The results of this study were summarized as follows: Students evaluated four foodservices in different ways, and strength/weakness points could be identified from the evaluation patterns. Most students(51.1%) were frequently used 'A' foodservice, though they preferred other foodservices, and cost, mainly, caused the difference. Perceptual map from multidimensional scaling showed that preference and patronage were close with different attributes. Cost was most relatively important attribute to select foodservice in campus from conjoint analysis. Therefore, relative importance of attributes should be considered in customer preference survey for constructing management plan.

  • PDF

An Efficient Multidimensional Scaling Method based on CUDA and Divide-and-Conquer (CUDA 및 분할-정복 기반의 효율적인 다차원 척도법)

  • Park, Sung-In;Hwang, Kyu-Baek
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.427-431
    • /
    • 2010
  • Multidimensional scaling (MDS) is a widely used method for dimensionality reduction, of which purpose is to represent high-dimensional data in a low-dimensional space while preserving distances among objects as much as possible. MDS has mainly been applied to data visualization and feature selection. Among various MDS methods, the classical MDS is not readily applicable to data which has large numbers of objects, on normal desktop computers due to its computational complexity. More precisely, it needs to solve eigenpair problems on dissimilarity matrices based on Euclidean distance. Thus, running time and required memory of the classical MDS highly increase as n (the number of objects) grows up, restricting its use in large-scale domains. In this paper, we propose an efficient approximation algorithm for the classical MDS based on divide-and-conquer and CUDA. Through a set of experiments, we show that our approach is highly efficient and effective for analysis and visualization of data consisting of several thousands of objects.

A Study on Development of Brand Positioning Map for Ladies' Ready-to-Wear Utilizing Multidimensional Scaling Method (다차원척도법을 이용한 여성기성복 상표 포지셔닝 연구)

  • Oh Hyun-Ju;Rhee Eun-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.14 no.2
    • /
    • pp.129-136
    • /
    • 1990
  • The purpose of the study was to develope brand positioning map for ladies' ready-to-wear, to find out evaluative criteria in perception and preference to brands, and to persent the relationship between consumer's characteristics and brand preference. Subjects were selected for the housewives of middle and high socioeconomic classes living in Seoul area. A questionnaire including items of life style, self image, similarity between brands, preference degree to brands, and demographic variables was developed for the empirical study. The questionnaire was administrated to 137 housewives during fall in 1989. Data were analyzed by cluster analysis and multidimensional scaling method. The study had two research problems. The first research problem was to construct a brand perceptual map for ladies' ready-to-wear brands, selected for the study The perceptual map was constructed on the basis of brand similarity scores by multidimensional scaling method. As a result, brands were grouped into 4 clusters, and evaluative criteria for perceptual map were found to be fashionability (classic- fashionable) and familiarity (familiar-unfamiliar). The second problem was to construct a brand preference map for ladies' ready-to-wear brands, selected for the study. The preference map was constructed on the basis of brand preference scores by multidimensional scaling method. As a result, the brands were grouped into 4 clusters and evaluative critiera for preference map were found to be fashionability (unfashionable-fashionable) and image to age (mature-young directed). Also was shown the relationship among self image, age, socioeconomic class, and brand preference. The multidimensional scaling method was found to be useful as well as valid instrument for brand positioning research and the result can be utilized for establishing strategies for ladies' ready-to-wear brands.

  • PDF