• Title/Summary/Keyword: Multicast Tree

Search Result 263, Processing Time 0.016 seconds

A Key Recovery Mechanism for Reliable Group Key Management (신뢰성 있는 그룹키 관리를 위한 키 복구 메커니즘)

  • 조태남;김상희;이상호;채기준;박원주;나재훈
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.6
    • /
    • pp.705-713
    • /
    • 2003
  • For group security to protect group data or to charge, group keys should be updated via key update messages when the membership of group changes. If we lose these messages, it is not possible to decrypt the group data and so this is why the recovery of lost keys is very significant. Any message lost during a certain member is logged off can not be recovered in real-time. Saving all messages and resending them by KDC (Key Distribution Center) not only requests large saving spaces, but also causes to transmit and decrypt unnecessary keys. This paper analyzes the problem of the loss of key update messages along with other problems that may arise during member login procedure, and also gives an efficient method for recovering group keys and auxiliary keys. This method provides that group keys and auxiliary keys can be recovered and sent effectively using information stored in key-tree. The group key generation method presented in this paper is simple and enable us to recover any group key without storing. It also eliminates the transmissions and decryptions of useless auxiliary keys.

Tree-based Group Key Agreement Protocol using Pairing (Pairing을 이용한 트리 기반 그룹키 합의 프로토콜)

  • 이상원;천정희;김용대
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.3
    • /
    • pp.101-110
    • /
    • 2003
  • Secure and reliable group communication is an increasingly active research area prompted by the growing popularity of many types of group-oriented and collaborative applications. The central challenge is secure and efficient group key management. While centralized methods are often appropriate for key distribution in large multicast-style groups, many collaborative group settings require distributed key agreement techniques. Most of prior group key agreement protocols have been focused on reducing the computational costs. One exception is STR protocol that optimizes communicational cost. On the other hand, it requires O(n) number of modular exponentiations. In this paper, we propose a new group key agreement protocol that modifies STR protocol by utilizing pairing based cryptography. The resulting protocol reduces computational cost of STR protocol while preserving the communication cost.

A Study on the Energy Efficient Data Aggregation Method for the Customized Application of Underwater Wireless Sensor Networks (특정 응용을 위한 수중센서네트워크에서 에너지 효율적인 데이터통합 방법 연구)

  • Kim, Sung-Un;Park, Seon-Yeong;Yu, Hyung-Cik
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1438-1449
    • /
    • 2011
  • UWSNs(Underwater Wireless Sensor Networks) need effective modeling fitted to the customized type of application and its covering area. In particular it requires an energy efficient data aggregation method for such customized application. In this paper, we envisage the application oriented model for monitoring the pollution or intrusion detection over a given underwater area. The suggested model is based on the honeycomb array of hexagonal prisms. In this model, the purpose of data aggregation is that the head node of each layer(cluster) receives just one event data arrived firstly and transfer this and its position data to the base station effectively in the manner of energy efficiency and simplicity without duplication. Here if we apply the existent data aggregation methods to this kind of application, the result is far from energy efficiency due to the complexity of the data aggregation process based on the shortest path or multicast tree. In this paper we propose three energy efficient and simple data aggregation methods in the domain of cluster and three in the domain of inter-cluster respectively. Based on the comparative performance analysis of the possible combination pairs in the two domains, we derive the best energy efficient data aggregation method for the suggested application.