• Title/Summary/Keyword: Multiaxial Stress State

Search Result 17, Processing Time 0.022 seconds

High Cycle Fatigue Damage under Multiaxial Random Loading through Dynamic Simulation for an Automotive Sub-Frame (동력학 시뮬레이션에 의한 다축 랜덤하중 하에서 자동차 서브프레임의 고 되풀이수 피로손상 평가)

  • Lee, Hak-Joo;Kang, Jae-Youn;Choi, Byung-Ick;Kim, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.946-953
    • /
    • 2003
  • A FEM-based analytical approach was used to evaluate the multiaxial high cycle fatigue damage of an automotive sub-frame. Elastic Multi Body Simulation (MBS) has been applied in order to determine the multiaxial load histories. The stresses due to these loads have been given by FE computation. These results have been used as the input for the multiaxial fatigue analysis. For the assessment of multiaxial high cycle fatigue damage, the signed von Mises, the signed Tresca, the absolute maximum principal stress and critical plane methods have been employed. In addition, the biaxiality ratio, a$\sub$e/, the absolute maximum principal stress, $\sigma$$\sub$p/ and the angle, $\phi$$\sub$P/, between $\sigma$$\sub$1/ and the local x-axis, have been calculated to evaluate the stress state at each node.

Multiaxial ratcheting behavior of Inconel 718 at elevated temperature (Inconel 718 의 고온 다축피로하중 하에서의 라체팅 거동)

  • Kim, Hyo-Shin;Kim, Kwang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.344-349
    • /
    • 2008
  • Ratcheting behavior of IN 718 was investigated at $649^{\circ}C$ under various proportional and non-proportional loading conditions with stress control. The material response was initially elastic but substantial plastic strain was developed as the material softened cyclically. Ratcheting strain was measured to near fatigue life, and is found to have three stages of development - primary, secondary (steady-state) and tertiary. The secondary stage dominates for most cases. Under the same equivalent stress amplitude and mean stress, it was revealed that circular path loading gives higher ratcheting rates and shorter lives than linear paths and that the more ratcheting occurs when the cyclic load is in the same direction as the mean stress. The ratcheting strain at failure depends not only on its rate but also on fatigue life itself, and it is not a primary life-determining factor.

  • PDF

Multiaxial fatigue behaviors of open-rib to crossbeam joints in orthotropic bridge structures

  • Yang, Haibo;Qian, Hongliang;Wang, Ping;Dong, Pingsha;Berto, Fillipo
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.843-853
    • /
    • 2022
  • The fatigue behavior of welded open rib-to crossbeam joints (ORCJ) in orthotropic bridge structures is investigated using a traction structural stress method. The fatigue behaviors of welded open rib-to crossbeam joints have been a subject of study for decades for ensuring operational safety and future design improvement. A mesh-insensitive combination of traction structural stresses in ORCJ was obtained considering the effect of in-plane shear stress and validated by fatigue test results. The proposed method is advantageous for predicting fatigue cracks that initiate from the crossbeam cutout and propagate along the crossbeam. The investigations carried out with the proposed approach reveal that the normal structural stress decreases with the propagation of fatigue cracks, while the ratio of shear stress to normal stress increases. The effect of shear structural stress is significant for the analysis of fatigue behavior of ORCJ in multiaxial stress states.

The Prediction of Fatigue Crack Initiation Life of Cylindrical Notch Specimens Using Local Strain Approximation (국부 변형률 근사를 이용한 원통형 노치시편의 피로균열 발생수명의 예측)

  • Lim, Jae-Yong;Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.791-798
    • /
    • 2004
  • Fatigue crack initiation lives of round cylindrical notch specimen were investigated. Firstly, local strain approximation methods, such as the modified incremental Neuber's rule and the modified incremental Glinka's equivalent strain energy density(ESED) rule, were used to get multiaxial stress and strain state components at the notch tip. Based on the history of local stress and strain, multiaxial fatigue models were used to obtain fatigue crack initiation lives. Because the solution of Neuber's rule and Glinka's ESED rule make the upper and lower bound of local strain approximations, fatigue crack initiation lives are expected to place between life predictions by two local strain approximations. Experimental data were compared with the fatigue crack initiation life prediction results.

Evaluation of Residual Strength in Damaged Brittle Materials (취성재료의 손상후 잔류강도 평가)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.932-938
    • /
    • 2002
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are usually subjected to multiaxial stress state. Brittle materials with cracks or damage by foreign object impacts are apt to fracture abruptly from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength of structural members with damage has been tested under uniaxial stress condition such as the 4-point bend test. Depending upon the crack pattern developed, the strength under multiaxial stress state might be different from the one under uniaxial. A comparative study was carried out to investigate the influence of stress state on the residual strength evaluation. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test, when a small size indendation crack was introduced. In the case that crack having an angle of 90deg. to the applied stress direction, the ratio of biaxial to uniaxial flexure strength was about 1.12. The residual strength was different from crack angles to loading direction when it was evaluated by the 4-point bend test. The ratio of residual strength of 45deg. crack to 90deg. one was about 1.20. In the case of specimen cracked by a spherical impact, it was shown that an overall decrease in flexure strength with increasing impact velocity, and the critical impact velocity for formation of a radial and/or cone crack was about 30m/s. In those cases that relatively large cracks were developed as compared with the case of indented cracks, the ratio of residual strength under biaxial stress state to one uniaxial became small.

Experimental Studies on Creep of Concrete under Multiaxial Stresses (다축응력 상태에 놓인 콘크리트외 크리프 특성에 관한 실험 연구)

  • Kwon Seung-Hee;Kim Sun-Young;Kim Jin-Keun;Lee Soo-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.185-194
    • /
    • 2004
  • It is difficult to analyze and predict the long-term behavior of concrete structures and members under multiaxial stresses because most of existing researches on creep of concrete were mainly concerned about uniaxial stress state. Therefore, the main objective of this paper is the investigation of creep properties of concrete under multiaxial stresses. This paper presents experimental study on creep of concrete under multiaxial compression. Twenty seven cubic specimens($20{\times}20{\times}20 cm$) for three concrete mixes were tested under uniaxial, biaxial, and triaxial stress states. Creep strains were measured in three directions of principal stresses. Poisson's ratio at the initial loading was obtained, as was Poisson's ratio due to creep stain and Poisson's ratio due to the combined creep strain and elastic strain. These Poisson's ratios were approximately equal for each concrete mix. The Poisson's ratio at the initial loading and the Poisson's ratio for the combined strain Increased slightly as the strength of the concrete increased. In addition, the volumetric creep strain and deviatoric creep strain were linearly proportional to volumetric stress and deviatoric stress, respectively.

A new finite element procedure for fatigue life prediction of AL6061 plates under multiaxial loadings

  • Tarar, Wasim;Herman Shen, M.H.;George, Tommy;Cross, Charles
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.571-592
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial, bending and shear fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In the first part of this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. In the second part of this study, a new Quadrilateral fatigue finite element is developed through integration of constitutive law into minimum potential energy formulation. This new QUAD-4 element is capable of simulating biaxial fatigue problems. The final output of this finite element analysis both using equivalent stress approach and using the new QUAD-4 fatigue element, is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.

Evaluation of Residual Strength in Damaged Brittle Materials (취성재의 손상후 잔류강도 평가)

  • Oh, Sang-Yeob;Shin, Hyung-Seop;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.137-142
    • /
    • 2001
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are often subjected to multiaxial stress. Brittle materials with crack or damaged by foreign object impacts are abruptly fractured from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength has been derived from tests under uniaxial stress such as a 4-point bend test. The strengths under multiaxial stresses might be different from the strength. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test. In the case that crack having 90deg. to loading direction, the ratio of biaxial to uniaxial flexure strength was 1.12. At a different crack angle to loading direction when it was evaluated by the 4-point bend test, the residual strength was different and the ratio of 45deg. to 90deg. was 1.16.

  • PDF

Contact Fatigue Life Prediction under Elliptical Elastohydrodynamic Lubrication (타원접촉 EHL 상태에서의 접촉피로수명 예측)

  • Kim, Tae-Wan;Lee, Sang-Don;Koo, Young-Pil;Cho, Yang-Joo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.320-328
    • /
    • 2006
  • In this study, the simulation of rolling contact fatigue based on stress analysis is conducted under Elastohydrodynamic Lubrication state. To predict a crack initiation life accurately, it is necessary to calculate contact stress and subsurface stresses accurately. Contact stresses are obtained by contact analysis of a semi-infinile solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. And a numerical algorithm using Newton-Rapson method was constructed to calculate the Elastohydrodynamic lubrication pressure. Based on these stress values, several multiaxial high-cycle fatigue criteria are used and the critical loads corresponding to fatigue limits are calculated.

State of Art for Biaxial Tensile Test Systems (2축 인장 시험 방법에 관한 고찰)

  • Park, J.G.;Ahn, D.C.;Nam, J.B.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.222-228
    • /
    • 2011
  • This paper is a review of biaxial tensile test equipments and specimens. The stresses acting on a component in service are multiaxial in nature. Therefore, it is necessary to consider the mechanical properties of sheet materials not only under uniaxial but also under these multiaxial stress states. Biaxial testing of metal in industry becomes an important investigation tool for the evaluation of mechanical properties of sheet metals. In this paper, several types of biaxial tensile tests were reviewed, and their advantages and limitations were discussed.