• Title/Summary/Keyword: MultiVane

검색결과 34건 처리시간 0.034초

복합신호 검출에 의한 압축기 부품의 상태 진단 (The Abnormal Condition Diagnosis of Compressor Parts using Multi-signal Sensing)

  • 이감규;김전하;강익수;강명창;김정석
    • 한국기계가공학회지
    • /
    • 제3권3호
    • /
    • pp.11-16
    • /
    • 2004
  • In this study, the characteristics of signals such as acoustic emission, vibration amplitude and noise level which are derived from the abnormal condition of compressor are investigated. The normal condition, vane stick sound and roller defect condition are chosen to analyze the signal in each cases. From the feature extraction of each signals, the dominant parameters of each signals which can identify the abnormal condition are suggested.

  • PDF

Prognostication for recurrence patterns after curative resection for pancreatic ductal adenocarcinoma

  • Andrew Ang;Athena Michaelides;Claude Chelala;Dayem Ullah;Hemant M. Kocher
    • 한국간담췌외과학회지
    • /
    • 제28권2호
    • /
    • pp.248-261
    • /
    • 2024
  • Backgrounds/Aims: This study aimed to investigate patterns and factors affecting recurrence after curative resection for pancreatic ductal adenocarcinoma (PDAC). Methods: Consecutive patients who underwent curative resection for PDAC (2011-21) and consented to data and tissue collection (Barts Pancreas Tissue Bank) were followed up until May 2023. Clinico-pathological variables were analysed using Cox proportional hazards model. Results: Of 91 people (42 males [46%]; median age, 71 years [range, 43-86 years]) with a median follow-up of 51 months (95% confidence intervals [CIs], 40-61 months), the recurrence rate was 72.5% (n = 66; 12 loco-regional alone, 11 liver alone, 5 lung alone, 3 peritoneal alone, 29 simultaneous loco-regional and distant metastases, and 6 multi-focal distant metastases at first recurrence diagnosis). The median time to recurrence was 8.5 months (95% CI, 6.6-10.5 months). Median survival after recurrence was 5.8 months (95% CI, 4.2-7.3 months). Stratification by recurrence location revealed significant differences in time to recurrence between loco-regional only recurrence (median, 13.6 months; 95% CI, 11.7-15.5 months) and simultaneous loco-regional with distant recurrence (median, 7.5 months; 95% CI, 4.6-10.4 months; p = 0.02, pairwise log-rank test). Significant predictors for recurrence were systemic inflammation index (SII) ≥ 500 (hazard ratio [HR], 4.5; 95% CI, 1.4-14.3), lymph node ratio ≥ 0.33 (HR, 2.8; 95% CI, 1.4-5.8), and adjuvant chemotherapy (HR, 0.4; 95% CI, 0.2-0.7). Conclusions: Timing to loco-regional only recurrence was significantly longer than simultaneous loco-regional with distant recurrence. Significant predictors for recurrence were SII, lymph node ration, and adjuvant chemotherapy.

빙해수조 공냉 시스템 변화에 따른 결빙 균질도 비교 전산해석 (Computational Analysis for Effects of Cooling System on Homogeneity of Ice Thickness and Temperature on Water Surface)

  • 이승수;김영민;이춘주
    • 대한조선학회논문집
    • /
    • 제50권3호
    • /
    • pp.167-174
    • /
    • 2013
  • Model ice forming process in ice tank needs several steps of seeding, freezing, tempering. In those process, one of the most important factors to affect the accuracy of experiment is the homogeneity of the ice thickness and the temperature. This paper investigated a computational and statistical method to assess the uniformity of the model ice. In addition, the different configurations of freezing systems were considered to improve the uniformity. Qualitative assessment using streamlines from the cooling units was carried out by computational fluid dynamics (CFD) and the quantitative evaluations of the homogeneity were compared using the temperature distribution on the ice surface. In addition, multi species transport analysis is introduced to understand the circulation efficiency of cold air from the cooling units. As the results, optimized configurations were determined by adjusting the angles of vane in the cooling units.

A cavitation performance prediction method for pumps: Part2-sensitivity and accuracy

  • Long, Yun;Zhang, Yan;Chen, Jianping;Zhu, Rongsheng;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3612-3624
    • /
    • 2021
  • At present, in the case of pump fast optimization, there is a problem of rapid, accurate and effective prediction of cavitation performance. In "A Cavitation Performance Prediction Method for Pumps PART1-Proposal and Feasibility" [1], a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments of a mixed flow pump. However, whether this method is applicable to vane pumps with different specific speeds and whether the prediction results of this method are accurate is still worthy of further study. Combined with the experimental results, the research evaluates the sensitivity and accuracy at different flow rates. For a certain operating condition, the method has better sensitivity to different flow rates. This is suitable for multi-parameter multi-objective optimization of pump impeller. For the test mixed flow pump, the method is more accurate when the area ratios are 13.718% and 13.826%. The cavitation vortex flow is obtained through high-speed camera, and the correlation between cavitation flow structure and cavitation performance is established to provide more scientific support for cavitation performance prediction. The method is not only suitable for cavitation performance prediction of the mixed flow pump, but also can be expanded to cavitation performance prediction of blade type hydraulic machinery, which will solve the problem of rapid prediction of hydraulic machinery cavitation performance.

헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계 (Design of Two Stage Axial Compressor of a Turbo Shaft Engine for Helicopters)

  • 김진한;김춘택;이대성
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.183-190
    • /
    • 1998
  • This paper introduces the part of efforts to develop a derivative type turbo-shaft engine from an existing baseline engine for multi-purpose helicopters targeting at 4000kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power to 840hp from 720hp with minimum modification, two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, two stage axial compressors were designed to have the flow rate of 3.04 kg/s, the pressure ratio of 2.01 and the adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF

A Hydraulic and Feasibility Study of New Tower Internal in Gas Processing Plants

  • Choo Chang-upp
    • International Journal of Safety
    • /
    • 제3권1호
    • /
    • pp.15-19
    • /
    • 2004
  • A new tower internal, which is called CSE, is presented. The CSE is composed of a nozzle perforated in its bottom along the entire periphery and equipped with a multi vane axial swirler at the inlet and hollow cylindrical separator at the outlet of the nozzle. According to the experimental work for obtaining the necessary hydraulic information of the CSE, which is used for preliminary design of a separation column, the CSE showed a stable operation over the wide rage of gas/liquid ratio. However, it caused large pressure drop due to the high gas velocity which should carry liquid droplets through the element. The high pressure drop may cause problems in energy recovery and the application of the CSE can be limited to the high pressure columns. Assuming that the tray efficiency of the CSE is the same with the existing separation columns, the results of the column design showed the size reduction of the column diameters by 30 to $40\%$ and investment cost saving, depending on operating conditions. The application of the CSE to separation column may also contribute to the de-bottlenecking the existing column.

로터리 버너의 축류형 팬 주위 유동특성 연구 (A Study on the Flow Characteristics Around an Axial Fan of Rotary Burner)

  • 고동국;조대진;윤석주
    • 한국분무공학회지
    • /
    • 제8권1호
    • /
    • pp.1-8
    • /
    • 2003
  • The flow analysis of the axial fan of rotary burner was performed by SIMPLE(Semi Implicit Method for Pressure Linked Equations) algorithm and finite volume mothod performed in the case of 3-D, incompressible, turbulent flow. In this study, the coordinate transformation was adapted for the complex geometry of axial fan, and the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent flow. Multi-block grid system was used for flow field and divided into four domains such as the inlet, outlet, flow field of rotating vane, and tip clearance. Fan rotation was simulated by rotational motion using MRF(Multiple Rotating Reference Frame) in steady, incompressible state flow.

  • PDF

헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계 (Modification of a Two Stage Axial Compressor of a Turboshaft Engine for Helicopters)

  • 김진한;김춘택;이대성
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.88-95
    • /
    • 1999
  • This paper introduces the part of efforts to develop a derivative type turboshaft engine from an existing baseline engine for multi-purpose helicopters aiming at 4000 kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power from 720 hp to 840hp with minimum modification, a two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, a two stage axial compressor was designed to facilitate a flow rate of 3.04 kg/s, a pressure ratio of 2.01 and an adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF

Incipient Cavitation in a Bulb Turbine: Model Test and CFD Calculation

  • Necker, Jorg;Aschenbrenner, Thomas
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.140-149
    • /
    • 2011
  • For a certain operating point of a horizontal shaft bulb turbine (i.e. volume flow, net head, blade angle, guide vane angle) the efficiency for different pressure levels (i.e. different Thoma-coefficient ${\sigma}$) is calculated using a commercial Computational Fluid Dynamics (CFD-)-code including two-phase flow and a cavitation model. The results are compared with experimental results achieved at a closed loop test rig for model turbines. The comparison of the experimentally and numerically obtained efficiency and the visual impression of the cavitation show a good agreement. Especially the drop in efficiency is calculated with satisfying accuracy. This drop in efficiency in combination with the visual impression is of high practical importance since it contributes to determine the admissible cavitation in a bulb-turbine. It is seen that the incipient cavitation in Kaplan type turbines has no major importance in determing this admissible amount of cavitation.

공압 구동식 로봇 손을 위한 소형 4/3-way 비례제어 밸브의 설계 및 실험 (Design and Experiment of a Miniature 4/3-Way Proportional Valve for a Servo-Pneumatic Robot Hand)

  • 류시복;홍예선
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.142-147
    • /
    • 1998
  • Developing robot hands with multi-degree-of-freedom is one of the topics that researchers have recently begun to improve the limitation by adding flexibility and dexterity. In this study, an articulated servo-pneumatic robot hand system with direct-drive joints has been developed whose main feature is the minimization of the dimension. The servo-pneumatic system is advantageous to fabricate a dexterous robot hand system due to the high torque-to-weight and torque-to-volume ratio. This enables the design of a finger joint with an integrated rotary vane type actuator which produces high output torque without reduction gears, being very robust. In order to control the servo-pneumatic finger joints, a miniature proportional valve that can be attached to the robot hand is required. In this paper, a flapper nozzle type 4/3-way proportional directional valve has been designed and tested. The experimental results show that the developed valve can control a finger joint satisfactorily without much vibratory joint movements and acoustic noises.

  • PDF