• Title/Summary/Keyword: MultiTask Learning

Search Result 139, Processing Time 0.032 seconds

Developing a Model for Predicting of Ships Accident Using Multi-Task Learning (다중 작업 학습을 이용한 선박사고 형량 예측 모델 제작)

  • Park, Ho-Min;Cheon, Min-Ah;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.418-420
    • /
    • 2020
  • 해양에서의 선박사고 발생 횟수는 매년 꾸준히 증가하고 있다. 한국해양안전심판원에서는 이러한 사례들의 판결을 관련 인력들이 공유할 수 있도록 재결서를 제작하여 발간하고 있다. 그러나 선박사고는 2019년 기준 2,971건이 발생하여, 재결서만으로 관련 인력들이 다양한 사건들의 판례를 익히기엔 어려움이 따른다. 따라서 본 논문에서는 문장 표상 기법을 이용한 다중 작업 학습을 이용하여 선박사고의 사고 유형, 적용되는 법령, 형량을 분류 및 예측하는 실험을 진행하였다. USE, KorBERT 두 가지의 모델을 2010~2019년 재결서 데이터로 학습하여 선박사고의 사고 유형, 적용되는 법령, 형량을 분류 및 예측하였으며 그에 따른 정확도를 비교한 결과, KorBERT 문장 표상을 사용한 분류 모델이 가장 정확도가 높음을 확인했다.

  • PDF

Research on Early Academic Warning by a Hybrid Methodology

  • Lun, Guanchen;Zhu, Lu;Chen, Haotian;Jeong, Dongwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.21-22
    • /
    • 2021
  • Early academic warning is considered as an inherent problem in education data mining. Early and timely concern and guidance can save a student's university career. It is widely assumed as a multi-class classification system in view of machine learning. Therefore, An accurate and precise methodical solution is a complicated task to accomplish. For this issue, we present a hybrid model employing rough set theory with a back-propagation neural network to ameliorate the predictive capability of the system with an illustrative example. The experimental results show that it is an effective early academic warning model with an escalating improvement in predictive accuracy.

  • PDF

Computation Offloading with Resource Allocation Based on DDPG in MEC

  • Sungwon Moon;Yujin Lim
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.226-238
    • /
    • 2024
  • Recently, multi-access edge computing (MEC) has emerged as a promising technology to alleviate the computing burden of vehicular terminals and efficiently facilitate vehicular applications. The vehicle can improve the quality of experience of applications by offloading their tasks to MEC servers. However, channel conditions are time-varying due to channel interference among vehicles, and path loss is time-varying due to the mobility of vehicles. The task arrival of vehicles is also stochastic. Therefore, it is difficult to determine an optimal offloading with resource allocation decision in the dynamic MEC system because offloading is affected by wireless data transmission. In this paper, we study computation offloading with resource allocation in the dynamic MEC system. The objective is to minimize power consumption and maximize throughput while meeting the delay constraints of tasks. Therefore, it allocates resources for local execution and transmission power for offloading. We define the problem as a Markov decision process, and propose an offloading method using deep reinforcement learning named deep deterministic policy gradient. Simulation shows that, compared with existing methods, the proposed method outperforms in terms of throughput and satisfaction of delay constraints.

A Design of AI Cloud Platform for Safety Management on High-risk Environment (고위험 현장의 안전관리를 위한 AI 클라우드 플랫폼 설계)

  • Ki-Bong, Kim
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.2
    • /
    • pp.01-09
    • /
    • 2022
  • Recently, safety issues in companies and public institutions are no longer a task that can be postponed, and when a major safety accident occurs, not only direct financial loss, but also indirect loss of social trust in the company and public institution is greatly increased. In particular, in the case of a fatal accident, the damage is even more serious. Accordingly, as companies and public institutions expand their investments in industrial safety education and prevention, open AI learning model creation technology that enables safety management services without being affected by user behavior in industrial sites where high-risk situations exist, edge terminals System development using inter-AI collaboration technology, cloud-edge terminal linkage technology, multi-modal risk situation determination technology, and AI model learning support technology is underway. In particular, with the development and spread of artificial intelligence technology, research to apply the technology to safety issues is becoming active. Therefore, in this paper, an open cloud platform design method that can support AI model learning for high-risk site safety management is presented.

SVM-based Energy-Efficient scheduling on Heterogeneous Multi-Core Mobile Devices (비대칭 멀티코어 모바일 단말에서 SVM 기반 저전력 스케줄링 기법)

  • Min-Ho, Han;Young-Bae, Ko;Sung-Hwa, Lim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.69-75
    • /
    • 2022
  • We propose energy-efficient scheduling considering real-time constraints and energy efficiency in smart mobile with heterogeneous multi-core structure. Recently, high-performance applications such as VR, AR, and 3D game require real-time and high-level processings. The big.LITTLE architecture is applied to smart mobiles devices for high performance and high energy efficiency. However, there is a problem that the energy saving effect is reduced because LITTLE cores are not properly utilized. This paper proposes a heterogeneous multi-core assignment technique that improves real-time performance and high energy efficiency with big.LITTLE architecture. Our proposed method optimizes the energy consumption and the execution time by predicting the actual task execution time using SVM (Support Vector Machine). Experiments on an off-the-shelf smartphone show that the proposed method reduces energy consumption while ensuring the similar execution time to legacy schemes.

Machine Learning-based Optimal VNF Deployment Prediction (기계학습 기반 VNF 최적 배치 예측 기술연구)

  • Park, Suhyun;Kim, Hee-Gon;Hong, Jibum;Yoo, Jae-Hyung;Hong, James Won-Ki
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.34-42
    • /
    • 2020
  • Network Function Virtualization (NFV) environment can deal with dynamic changes in traffic status with appropriate deployment and scaling of Virtualized Network Function (VNF). However, determining and applying the optimal VNF deployment is a complicated and difficult task. In particular, it is necessary to predict the situation at a future point because it takes for the process to be applied and the deployment decision to the actual NFV environment. In this paper, we randomly generate service requests in Multiaccess Edge Computing (MEC) topology, then obtain training data for machine learning model from an Integer Linear Programming (ILP) solution. We use the simulation data to train the machine learning model which predicts the optimal VNF deployment in a predefined future point. The prediction model shows the accuracy over 90% compared to the ILP solution in a 5-minute future time point.

Performance Enhancement of Face Detection Algorithm using FLD (FLD를 이용한 얼굴 검출 알고리즘의 성능 향상)

  • Nam, Mi-Young;Kim, Kwang-Baek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.783-788
    • /
    • 2004
  • Many reported methods assume that the faces in an image or an image sequence have been identified and localization. Face detection from image is a challenging task because of the variability in scale, location, orientation and pose. The difficulties in visual detection and recognition are caused by the variations in viewpoint, viewing distance, illumination. In this paper, we present an efficient linear discriminant for multi-view face detection and face location. We define the training data by using the Fisher`s linear discriminant in an efficient learning method. Face detection is very difficult because it is influenced by the poses of the human face and changes in illumination. This idea can solve the multi-view and scale face detection problems. In this paper, we extract the face using the Fisher`s linear discriminant that has hierarchical models invariant size and background. The purpose of this paper is to classify face and non-face for efficient Fisher`s linear discriminant.

Fault Diagnosis of Bearing Based on Convolutional Neural Network Using Multi-Domain Features

  • Shao, Xiaorui;Wang, Lijiang;Kim, Chang Soo;Ra, Ilkyeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1610-1629
    • /
    • 2021
  • Failures frequently occurred in manufacturing machines due to complex and changeable manufacturing environments, increasing the downtime and maintenance costs. This manuscript develops a novel deep learning-based method named Multi-Domain Convolutional Neural Network (MDCNN) to deal with this challenging task with vibration signals. The proposed MDCNN consists of time-domain, frequency-domain, and statistical-domain feature channels. The Time-domain channel is to model the hidden patterns of signals in the time domain. The frequency-domain channel uses Discrete Wavelet Transformation (DWT) to obtain the rich feature representations of signals in the frequency domain. The statistic-domain channel contains six statistical variables, which is to reflect the signals' macro statistical-domain features, respectively. Firstly, in the proposed MDCNN, time-domain and frequency-domain channels are processed by CNN individually with various filters. Secondly, the CNN extracted features from time, and frequency domains are merged as time-frequency features. Lastly, time-frequency domain features are fused with six statistical variables as the comprehensive features for identifying the fault. Thereby, the proposed method could make full use of those three domain-features for fault diagnosis while keeping high distinguishability due to CNN's utilization. The authors designed massive experiments with 10-folder cross-validation technology to validate the proposed method's effectiveness on the CWRU bearing data set. The experimental results are calculated by ten-time averaged accuracy. They have confirmed that the proposed MDCNN could intelligently, accurately, and timely detect the fault under the complex manufacturing environments, whose accuracy is nearly 100%.

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

Exploring Changes in Multi-ethnic Students' Mathematics Achievement Motivation : A Longitudinal Study using Expectancy-Value Theory (다문화가정 학생의 수학학업성취 동기 변화 연구: 기대가치 이론에 따른 종단연구)

  • Cho, Eunhye;Hwang, Sunghwan
    • The Mathematical Education
    • /
    • v.58 no.1
    • /
    • pp.101-120
    • /
    • 2019
  • The goal of this study was to apply an expectancy-value model(Wigfield & Eccles, 2000) to explain changes in six multi-ethnic students' achievement motivation in mathematics during sixth (2012) to eighth (2014) grades. In order to achieve this goal, we used narrative research methods. Although individual students' achievement motivation and mathematics related life experiences differed, there are some common factors influencing their motivation development, especially (a) roles played by parents and teachers; (b) assessment of peers' competencies; (c) past learning experiences related to mathematics curriculum; (d) perception of the relationship between mathematics competency and other subjects; (e) home backgrounds; and (f) perceived task values. In this study, we achieved some insight into why some multi-ethnic students are willing to study hard to get good scores while others are uninterested in mathematics, and why some multi-ethnic students are likely to pursue new mathematical tasks and persist despite challenges, while others easily give up studying mathematics in the face of adversity. We argue that in order to increase and sustain multi-ethnic students' achievement motivation, educators and parents should recognize that motivation is contextually formulated in the intersection of current people, time, and space, not a personal entity formed in an individual's mind. The findings of this study shed light on the development of achievement motivation and can inform efforts to develop multi-ethnic students' positive motivation, which might influence their mathematics achievement and success in school.