• Title/Summary/Keyword: Multi-walled carbon nanotubes (MWNT)

Search Result 54, Processing Time 0.023 seconds

Relationship between Field Emission Property and Composition of Carbon Nanotube Paste for Large Area Cold Cathode

  • Choi, Jong-Hyung;Kang, Sung-Kee;Han, Jae-Hee;Yoo, Ji-Beom;Park, Chong-Yun;Nam, Joong-Woo;Kim, J.M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.852-854
    • /
    • 2003
  • CNT paste was fabricated by mixture of multi-walled carbon nanotubes (MWNT) powder, organic vehicles and inorganic binder. Then firing process was performed at different temperature under air and $N_{2}$ atmosphere. It was found that emission property of CNT paste was changed by firing temperature and time due to interaction between remained resins and CNT powder. We obtained good emission property from CNT paste treated at $350^{\circ}C$ for 10 min.

  • PDF

Electrical and Mechanical Properties of Graphite Nanosheet/Carbon Nanotubes-filled Epoxy Nanocomposites

  • Kim, Ki-Seok;Choi, Kyeong-Eun;Park, Soo-Jin
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.335-338
    • /
    • 2009
  • In this work, the effect of co-carbon fillers on the electrical and mechanical properties of epoxy nanocomposites was investigated. The graphite nanosheets (GNs) and multi-walled carbon nanotubes (MWNTs) were used as co-carbon fillers. The results showed that the electrical conductivity of the epoxy nanocomposites showed a considerable increase upon an addition of MWNTs when GNs were fixed at 2 wt.%. This indicated that low content GNs formed the bulk conductive network and then MWNTs added were intercalated between the GN layers, resulted in the formation of additional conductive pathway. Furthermore, the flexural strength of the epoxy nanocomposites was enhanced with increasing the MWNT content. It was probably attributed to the flexible MWNTs compared with rigid GNs, resulted in the enhancement of the mechanical properties.

Thermal and Electrical Properties of Polyacrylate/Carbon Nanotube Composite Sheet (폴리아크릴레이트/카본나노튜브 복합체 시트의 열적.전기적 성질)

  • Choi, A.Y.;Yoon, K.H.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.231-236
    • /
    • 2011
  • The polyacrylate/multi-walled carbon nanotube (MWNT) composites were prepared and investigated for the application as a counter electrode in solar cell. The electrical conductivity of the composites was increased with increasing MWNT content and with the thickness of the sheet. The surface resistivity value of the composite at 50 wt% loading of MWNT was 0.36 ${\Omega}$/sq. The thermal decomposition temperature of the composites was also increased with the MWNT contents, and the increase of $15^{\circ}C$ was observed at the composite of polyacrylate/MWNT (50/50, w/w). The increase of storage modulus of the composites was observed, especially at the higher temperature compared to polyacrylate. The dimensional change of polyacrylate decreased over $20^{\circ}C$, but that of the composite increased linearly with the temperature. The morphology of the composites stands for the good dispersion of MWNT into the polyacrylate matrix.

The Effect of Electrical Characteristics and Electrode Shape on Alignment of Multi-walled Carbon Nanotubes (전기장 특성과 전극 형상이 다중벽 탄소나노튜브 정렬에 미치는 영향)

  • Kwon, Se-Hun;Jeong, Young-Keun;Jung, Chang-Sik;Kang, Myung-Chang;Lee, Hyung-Woo
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.326-335
    • /
    • 2010
  • In this paper, the effect of electrical characteristics and electrode shape on the alignment and attachment of multi-walled carbon nanotubes (MWNTs) has been studied. The attraction and alignment of MWNTs between the gaps has been investigated by applying electric field which is called electrophoresis and dielectrophoresis. According to the frequency of electric field, positive or negative dielectrophoretic force can be determined. The concentration of MWNTs solution was $5\;{\mu}g/ml$, and a droplet of $1.0{\sim}1.5\;{\mu}l$ was dropped between two electrodes. Through the repeated experiments, the optimal electrical conditions for aligning and attaching MWNTs in the desired places were obtained. Since the frequency range of 100 kHz~10 MHz generated positive dielectrophoretic force, MWNTs were attracted and aligned between the gaps with this frequency range. For generating enough force to attract MWNTs, the appropriate voltage range was $0.3{\sim}1.3\;V_{rms}/{\mu}m$. Furthermore, the effect of electrode shape on the alignment of MWNTs was investigated. A single MWNT attachment was accomplished on the round shaped with 70% yield.

Synthesis and Thermo-mechanical Property of Multi-walled Carbon Nanotubes/Poly(methyl methacrylate-co-butyl acrylate) Nanocomposites Prepared Using Emulsion Polymerizations in the Presence of Amphiphilic Random Terpolymer

  • Chang, Woo-Hyuck;Ki, Ho-Seong;Cheong, In-Woo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.289-289
    • /
    • 2006
  • The carboxylated MWNTs were successfully prepared by conventional acid treatment, and their structures were confirmed by FT-IR, Raman and TEM analysis. The water-dispersibility of the surface modified WNTs were good. The COOH-MWNT will show better stability during the emulsion polymerization as compared with Pristine MWNT. In-situ emulsion polymerizations of methyl methacrylate N(MMA) and n-butyl acrylate (BA) were carried out. Aggregate size and dispersion stability of the CNTs in water phase were measured using dynamic light scattering, turbidity, UV-visible spectrophotometer, and electron microscope. In addition, thermo-mechanical properties of MWNT/polymer nanocomposites were investigated.

  • PDF

Effect of Gamma Ray Irradiation on the Mechanical and Thermal Properties of MWNTs Reinforced Epoxy Resins

  • Shin, Bum Sik;Shin, Jin Wook;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • Epoxy resins are widely used as high performance thermosets in many industrial applications, such as coatings, adhesives and composites. Recently, a lot of research has been carried out in order to improve their mechanical properties and thermal stability in various fields. Carbon nanotubes possess high physical and mechanical properties that are considered to be ideal reinforcing materials in composites. CNT-reinforced epoxy system hold the promise of delivering superior composite materials with their high strength, light weight and multi functional features. Therefore, this study used multi-walled carbon nanotubes (MWNT) and gamma rays to improve the mechanical and thermal properties of epoxy. The diglycidyl ether of bisphenol A (DGEBA) as epoxy resins were cured by gamma ray irradiation with well-dispersed MWNTs as a reinforcing agent and triarylsulfonium hexafluoroantimonate (TASHFA) as an initiator. The flexural modulus was measured by UTM (universal testing machine). At this point, the flexural modulus factor exhibits an upper limit at 0.1 wt% MWNT. The thermal properties had improved by increasing the content of MWNT in the result of TGA (thermogravimetric analysis). However, they were decreased with increasing the radiation dose. The change of glass transition temperature by the radiation dose was characterized by DMA (dynamic mechanical analysis).

Effect of Wrapping Treatment on the Dispersion of MWNT in CNT/ABS/SAN Composites (CNT/ABS/SAN계의 분산성에 미치는 MWNT Wrapping 전처리 효과)

  • Kim, Sung Tae;Park, Hae Youn;No, Tae Kyeong;Kang, Dong Gug;Jeon, Il Ryeon;Seo, Kwan Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.372-376
    • /
    • 2012
  • Carbon nanotubes (CNT) are considered as one of ideal nano-fillers in the field of composites with their excellent electrical, mechanical, and thermal properties. Therefore CNT composites are increasingly used in fabricating conductive materials, structural materials with high strength and low weight, and multifunctional materials. The main problem of the CNT composites is difficulty in the dispersion of CNT in the polymer matrix. In this study multi-walled carbon nanotubes (MWNT) were pretreated by the physical process utilizing a wrapping method. After the pretreatment polymer/MWNT nanocomposites were prepared by melt processing. The effect of functionalization MWNT by wrapping with styrene acrylonitrile (SAN) on the mechanical and electrical properties of acrylonitrile butadiene styrene resin (ABS)/MWNT composites was studied by comparing the properties of ABS mixed with the neat MWNT. Electrical and mechanical properties of ABS/MWNT nanocomposites were studied as a function of the functionalization and content of MWNT. The tensile strength of the ABS/MWNT nanocomposites increased, but the impact strength decreased. The polymer wrapping in ABS system has little effect on the improvement of electrical properties.

Measurement of Tensile Properties for Carbon Nano Tubes Using Nano Force Sensor (나노 힘 센서를 이용한 탄소나노튜브 인장물성 측정)

  • Nahm Seung-Hoon;Baek Un-Bong;Park Jong-Seo;Lee Yun-Hee;Kwon Sung-Hwan;Kim Am-Kee
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.73-76
    • /
    • 2005
  • Carbon nanotubes (CNTs) have attracted an increasing attention due to their superior mechanical properties and potential application in industries. The strength of CNT has been predicted or calculated through several simulation techniques but actual experiments on stress-strain behavior are rare due to its dimensional limit, nanoscale positioning/manipulation, and instrumental resolution. We have attempted to observe straining responses of a multi-walled carbon nanotube (MWNT) by performing an in-situ tensile testing in a scanning electron microscope. The carbon nanotube, having its both ends attached on a cantilever force sensor and Y-shaped support, was elongated by a computer-controlled nanomanipulator. Linear deformation and fracture behaviors of MWNT were successfully observed and its force-displacement curve was also measured from the bending stiffness and displacement of the force sensor and manipulator.

  • PDF

Characterization of PMMA/MWNT Composites Fabricated by a Twin Screw Extruder (이축 압출기를 이용하여 제조된 PMMA/MWNT 복합체의 특성 분석)

  • Woo, Jong-Seok;Lee, Geon-Woong;Kye, Hyoung-San;Shin, Kyung-Chul;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.151-158
    • /
    • 2007
  • MWNTs have been widely investigated due to unique properties of such as good electrical conductivity and thermal stability in polymer composites industries. This paper established the procedure to fabricate PMMA/MWNT composites by a modular intermeshing co-rotating twin screw extruder with L/D ratio of 42. The electrical properties of PMMA/MWNT composites with different content of MWNT have been investigated. A sheet resistance percolation was observed at 4 wt% of MWNT for the melt processed composites. Sheet resistance of PMMA/MWNT composite film containing 4 wt% of MWNT was nearby $10^4{\Omega}/sq$ and this shows the possibility of potential application to EMI (Electronic Magnetic Interference) shielding materials. The characteristics of composites were analyzed by TGA, DSC, and SEM. In addition, MFI (Melt Flow Index) has been measured to analyze the rheological property.

Effect of SiO2 Layer of Si Substrate on the Growth of Multiwall-Carbon Nanotubes (실리콘 기판의 산화층이 다중벽 탄소나노튜브 성장에 미치는 영향)

  • Kim, Geum-Chae;Lee, Soo-Kyoung;Kim, Sang-Hyo;Hwang, Sook-Hyun;Choi, Hyon-Kwang;Jeon, Min-Hyon
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.50-53
    • /
    • 2009
  • Multi-walled carbon nanotubes (MWNTs) were synthesized on different substrates (bare Si and $SiO_2$/Si substrate) to investigate dye-sensitized solar cell (DSSC) applications as counter electrode materials. The synthesis of MWNTs samples used identical conditions of a Fe catalyst created by thermal chemical vapor deposition at $900^{\circ}C$. It was found that the diameter of the MWNTs on the Si substrate sample is approximately $5{\sim}10nm$ larger than that of a $SiO_2$/Si substrate sample. Moreover, MWNTs on a Si substrate sample were well-crystallized in terms of their Raman spectrum. In addition, the MWNTs on Si substrate sample show an enhanced redox reaction, as observed through a smaller interface resistance and faster reaction rates in the EIS spectrum. The results show that DSSCs with a MWNT counter electrode on a bare Si substrate sample demonstrate energy conversion efficiency in excess of 1.4 %.