• Title/Summary/Keyword: Multi-view plus Depth Data

Search Result 3, Processing Time 0.016 seconds

Sequential Point Cloud Generation Method for Efficient Representation of Multi-view plus Depth Data (다시점 영상 및 깊이 영상의 효율적인 표현을 위한 순차적 복원 기반 포인트 클라우드 생성 기법)

  • Kang, Sehui;Han, Hyunmin;Kim, Binna;Lee, Minhoe;Hwang, Sung Soo;Bang, Gun
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.166-173
    • /
    • 2020
  • Multi-view images, which are widely used for providing free-viewpoint services, can enhance the quality of synthetic views when the number of views increases. However, there needs an efficient representation method because of the tremendous amount of data. In this paper, we propose a method for generating point cloud data for the efficient representation of multi-view color and depth images. The proposed method conducts sequential reconstruction of point clouds at each viewpoint as a method of deleting duplicate data. A 3D point of a point cloud is projected to a frame to be reconstructed, and the color and depth of the 3D point is compared with the pixel where it is projected. When the 3D point and the pixel are similar enough, then the pixel is not used for generating a 3D point. In this way, we can reduce the number of reconstructed 3D points. Experimental results show that the propose method generates a point cloud which can generate multi-view images while minimizing the number of 3D points.

Multi-view Synthesis Algorithm for the Better Efficiency of Codec (부복호화기 효율을 고려한 다시점 영상 합성 기법)

  • Choi, In-kyu;Cheong, Won-sik;Lee, Gwangsoon;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.375-384
    • /
    • 2016
  • In this paper, when stereo image, satellite view and corresponding depth maps were used as the input data, we propose a new method that convert these data to data format suitable for compressing, and then by using these format, intermediate view is synthesized. In the transmitter depth maps are merged to a global depth map and satellite view are converted to residual image corresponding hole region as out of frame area and occlusion region. And these images subsampled to reduce a mount of data and stereo image of main view are encoded by HEVC codec and transmitted. In the receiver intermediate views between stereo image and between stereo image and bit-rate are synthesized using decoded global depth map, residual images and stereo image. Through experiments, we confirm good quality of intermediate views synthesized by proposed format subjectively and objectively in comparison to intermediate views synthesized by MVD format versus total bit-rate.

Reduced Reference Quality Metric for Synthesized Virtual Views in 3DTV

  • Le, Thanh Ha;Long, Vuong Tung;Duong, Dinh Trieu;Jung, Seung-Won
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1114-1123
    • /
    • 2016
  • Multi-view video plus depth (MVD) has been widely used owing to its effectiveness in three-dimensional data representation. Using MVD, color videos with only a limited number of real viewpoints are compressed and transmitted along with captured or estimated depth videos. Because the synthesized views are generated from decoded real views, their original reference views do not exist at either the transmitter or receiver. Therefore, it is challenging to define an efficient metric to evaluate the quality of synthesized images. We propose a novel metric-the reduced-reference quality metric. First, the effects of depth distortion on the quality of synthesized images are analyzed. We then employ the high correlation between the local depth distortions and local color characteristics of the decoded depth and color images, respectively, to achieve an efficient depth quality metric for each real view. Finally, the objective quality metric of the synthesized views is obtained by combining all the depth quality metrics obtained from the decoded real views. The experimental results show that the proposed quality metric correlates very well with full reference image and video quality metrics.