본 논문에서는 실내환경의 3차원 복원을 위해 다시점 카메라부터 획득된 부분적인 3차원 점군에 대한 정합 기법을 제안한다. 일반적으로, 기존의 정합 방법들은 많은 계산량을 요하며, 정합하는데 많은 시간이 소요된다 또한, 상대적으로 정밀도가 낮은 3차원 점군에 대해서는 정합이 어렵다. 이러한 문제점을 해결하기 위해 투영 기반 정합 방법을 제안한다. 첫 번째, 시간적 특성을 기반으로 변화량이 큰 3차원 점들을 제거하고, 공간적 특성을 이용하여 현재 화소의 주변 3차원 점을 참조하여 빈 영역을 채움으로써 깊이 영상 정제 과정을 수행한다. 두 번째, 연속된 두 장면에서의 3차원 점군을 동일한 영상 평면으로 투영하고, 두 단계 정수 매핑을 적용한 후 수정된 KLT (Kanade-Lucas-Tomasi) 특징 추적기를 사용해 대응점을 찾는다. 그리고 적응적 탐색 영역에 기반하여 거리 오차를 최소화함으로써 정밀한 정합을 수행한다. 마지막으로, 대응되는 점들에 대한 색을 참조하여 최종적인 색을 계산하고, 위의 과정을 연속된 장면에 적용함으로써 실내환경을 복원한다. 제안된 방법은 대응점을 2차원 영상 평면에서 찾음으로써 계산의 복잡도를 줄이며, 3차원 데이터의 정밀도가 낮은 경우에도 정합이 효과적이다. 또한, 다시점 카메라를 이용함으로써 몇 장면에 대한 색과 깊이 영상만으로도 실내환경의 3차원 복원이 가능하다.
대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
/
pp.319-324
/
1998
Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a whisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of < 1 km over the entire field-of-view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The instrument also performs sun calibration and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400 nm to 900 nm using a CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands after launch. The instrument performances are fully measured for 8 basic spectral bands centered at 412nm, 443nm, 490nm, 510nm, 555nm, 670nm, 765nm and 865nm during ground characterization of instrument. In addition to the ground calibration, the on-board calibration will also be used for the on-orbit band selection. The on-orbit band selection capability can provide great flexibility in ocean color monitoring.
대공 레이다에서 표적의 분류는 대 탄도탄 모드 수행의 가장 중요한 부분 중 하나이다. 대 탄도탄 모드에서는 항공기와 탄도탄을 분류하여 각 표적에 따른 대응 방법을 결정한다. 표적 분류의 속도와 정확도는 적의 공격에 대한 대응 능력과 직접적인 관련이 있으므로, 효율적이고 정확한 표적 분류 알고리즘이 필수적이다. 일반적으로, 레이다는 표적 분류를 위해 JEM(Jet Engine Modulation) 및 HRR(High Range Resolution), ISAR(Inverse Synthetic Array Radar) 영상 등을 사용하는데, 이러한 기법들은 표적 분류를 위한 별도의(광대역 등) 레이다 파형과 DB(Data Base) 및 분류 알고리즘을 요구한다. 본 논문은 별도의 파형 없이 실제 다기능 레이다에서 적용 가능한 표적 분류 기법을 제안한다. 특징 벡터로 추적 시 얻은 표적의 운동학적인 특징(kinematics features)을 이용하여 레이다 하드웨어 및 시간 관점에서 레이다 자원을 아끼고, 구현이 간단하여 빠르고 상대적으로 정확한 퍼지 논리(fuzzy logic)를 분류 알고리즘으로 사용하여 실제 환경에서의 적용성을 높였다. 항공기의 실측 데이터와 탄도탄의 모의 신호를 사용하여 제안한 분류 알고리즘의 성능과 적합성을 증명하였다.
Accurate localization of radioactive materials is crucial in homeland security and radiological emergencies. Coded-aperture gamma camera is an interesting solution for such applications and can be developed into portable real-time imaging devices. However, traditional reconstruction methods cannot effectively deal with signal-independent noise, thereby hindering low-noise real-time imaging. In this study, a novel reconstruction method with excellent noise-suppression capability based on a multi-layer perceptron (MLP) is proposed. A coded-aperture gamma camera based on pixel detector and coded-aperture mask was constructed, and the process of radioactive source imaging was simulated. Results showed that the MLP method performs better in noise suppression than the traditional correlation analysis method. When the Co-57 source with an activity of 1 MBq was at 289 different positions within the field of view which correspond to 289 different pixels in the reconstructed image, the average contrast-to-noise ratio (CNR) obtained by the MLP method was 21.82, whereas that obtained by the correlation analysis method was 5.85. The variance in CNR of the MLP method is larger than that of correlation analysis, which means the MLP method has some instability in certain conditions.
본 논문에서는 지능형 다중 화상감시시스템에 응용할 수 있는 움직이는 물체 추적 및 보행자/차량 인식 방법을 제안한다. 지능형 다중 화상감시시스템은 다수의 고정형 카메라와 한 대의 PTZ 카메라로 구성되며, 고정형 카메라에서 검출된 움직이는 물체들을 PTZ 카메라로 팬/틸트/줌 제어하고, 보행자인지 또는 차량인지를 자동으로 인식한다. 넓은 영역을 감시하는 고정된 카메라에서 검출된 물체는 너무 작고, 변별력이 떨어지는 문제가 있다. 이러한 문제를 극복하기 위해 PTZ 카메라를 통한 특정 움직이는 물체를 팬/틸트/줌인 제어함으로써 움직이는 물체의 변별력과 감시성능을 높일 수 있다. 제안된 시스템은 움직이는 물체를 추적하는 기능 외에 SVM 학습알고리즘을 이용하여 검출된 물체가 보행자 또는 차량인지를 판단할 수도 있다. 그리고 추적에러를 줄이기 위해 기존의 고정된 카메라와 PTZ 카메라간의 캘리브레이션 방법을 개선한다. 다양한 실험결과를 통하여 제안한 시스템의 효용성을 입증하였다.
본 논문에서는 기존의 변이 영상 획득 방법들에 비하여 시간 대비 정확도가 우수한 기법을 제안하고 H/W로 구현한다. 제안한 기법은 고속 연산이 가능한 화소 대 화소의 움직임 추정 기법을 이용한다. 움직임 추정 기법은 영상 내 텍스쳐의 분포 특성과 무관하게 정합 윈도우의 유사성에만 의존하기 때문에 추출된 변이정보의 정확도가 떨어진다. 이를 해결하기 위해서 영상의 국부 특성에 따른 가변 크기 윈도우 정합 기법을 도입하고, 영상 내 텍스쳐가 균일한 부분 및 물체의 윤곽선 부분에서도 높은 정확도를 얻는다. 제안한 기법은 고속 연산이 가능하도록 수행속도에 최적화된 하드웨어로 설계된다. 하드웨어는 Verilog-HDL로 설계하였고, Hynix $0.35{\mu}m$ CMOS 라이브러리를 사용하여 게이트수준으로 합성하였다. 구현한 하드웨어는 최대 120MHz의 클록 주파수에서 초당 15 프레임을 안정적으로 처리할 수 있었다.
물체 표면의 재질을 실물에 가깝게 렌더링 하는 것은 그래픽 콘텐츠의 사실감을 위한 중요한 요소이다. 본 논문은 속성이 다른 여러 구성 물질에 의해 복잡한 무늬가 형성된 표면을 한 장의 스틸 사진만을 이용하여 셰이딩하는 기법을 제안한다. 기존 방법들은 이와 같은 이종물질에 의한 불규칙한 텍스처의 렌더링을 위해 많은 이미지를 필요로 하거나 특수 촬영 장비를 사용했으며, 수작업에 의해 물질별 표면 영역을 나누어 주어야 했다. 본 연구에서는 영상의 히스토그램 분포 특성에 따른 물질별 텍스처 영역 분할법의 자동 선택 방식을 제시하였고, 그 결과로 구분된 물질별 레이어에 대해 근사화(approximate)된 양방향 반사도 분포함수(BRDF) 값을 구함으로써 주어진 사진과 다른 조명 조건이나 시야(view)에 대해서도 대응되는 렌더링 및 셰이딩 결과를 생성할 수 있음을 보였다.
In order to maximize the use of BIM, all data related to individual elements in the model must be correctly assigned, and it is essential to check whether it corresponds to the IFC entity classification. However, as the BIM modeling process is performed by a large number of participants, it is difficult to achieve complete integrity. To solve this problem, studies on semantic integrity verification are being conducted to examine whether elements are correctly classified or IFC mapped in the BIM model by applying an artificial intelligence algorithm to the 2D image of each element. Existing studies had a limitation in that they could not correctly classify some elements even though the geometrical differences in the images were clear. This was found to be due to the fact that the geometrical characteristics were not properly reflected in the learning process because the range of the region to be learned in the image was not clearly defined. In this study, the CRF-RNN-based semantic segmentation was applied to increase the clarity of element region within each image, and then applied to the MVCNN algorithm to improve the classification performance. As a result of applying semantic segmentation in the MVCNN learning process to 889 data composed of a total of 8 BIM element types, the classification accuracy was found to be 0.92, which is improved by 0.06 compared to the conventional MVCNN.
일반적으로, 컴퓨터 비전, 로보틱스, 증강현실 분야에서 3차원 공간 및 3차원 객체 검출 및 인식기술의 중요성이 대두되고 있다. 특히, 마이크로소프트사의 키넥트(Microsoft Kinect) 방식을 사용하는 영상 센서를 통하여 RGB 영상과 깊이 영상을 실시간 획득하는 것이 가능해짐으로 인하여 객체 검출, 추적 및 인식 연구에 많은 변화를 가져오고 있다. 본 논문에서는 다시점 카메라 시스템 상에서의 깊이 기반(RGB-Depth) 카메라를 통해 획득된 영상을 처리하여 3D 복원 영상의 품질을 향상하는 방법을 제안한다. 본 논문에서는 컬러 영상으로부터 획득한 마스크 적용을 통해 객체 바깥쪽 잡음을 제거하는 방법과 객체 안쪽의 픽셀 간 깊이 정보 차이를 구하는 필터링 연산을 결합하여 적용하는 방법을 제시하였다. 각 실험 결과를 통해 제시한 방법이 효과적으로 잡음을 제거하여 3D 복원 영상의 품질을 향상할 수 있음을 확인하였다.
최근 자연스러운 3차원 영상의 재현을 위하여 깊이영상을 이용한 영상합성 방법이 널리 이용되고 있다. 깊이영상은 시청자의 눈에 보이지는 않지만 합성영상의 화질을 결정하는 중요한 정보이므로 정확한 깊이영상을 획득하는 것이 중요하다. 특히 적외선 센서를 이용한 깊이 카메라(time-of-flight camera)는 보다 정확한 깊이영상을 획득하는데 이용되고 있다. 깊이 카메라는 스테레오 정합(stereo matching)에 비해 정확하고 실시간으로 깊이정보를 추출할 수 있지만, 제공되는 해상도가 너무 낮다는 단점이 있다. 본 논문에서는 단시점의 깊이영상을 두 시점의 깊이영상으로 확장하고, 이를 이용하여 여러 시점의 중간영상을 생성하는 시스템을 제안한다. 특히 복잡도를 낮춰 빠른 속도로 다시점 영상을 생성하는 시스템을 제안한다. 고해상도의 컬러 영상을 획득하기 위하여 두 대의 컬러 카메라를 설치하고 중간에 깊이 카메라를 획득한다. 그리고 깊이 카메라에서 획득한 깊이영상을 3차원 워핑을 이용하여 양쪽의 컬러 카메라의 위치로 시점 이동한다. 깊이영상과 컬러영상간의 객체 불일치 문제는 깊이값의 신뢰 도를 기반으로 한 조인트 양방향 필터(joint bilateral filter)를 이용하여 보정한다. 이러한 과정을 통해 얻은 깊이영상은 다시점 영상 합성 방법을 이용하여 다시점 영상을 획득한다. 이와 같은 과정은 다중 스레드를 이용하여 빠르게 처리할 수 있도록 구현했다. 실험을 통해 두 시점의 컬러영상과 두 시점의 깊이영상이 실시간으로 획득했고, 약 7 fps의 프레임율로 10시점의 중간시점을 동시에 생성했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.