• Title/Summary/Keyword: Multi-view Camera

Search Result 159, Processing Time 0.042 seconds

Low-noise reconstruction method for coded-aperture gamma camera based on multi-layer perceptron

  • Zhang, Rui;Tang, Xiaobin;Gong, Pin;Wang, Peng;Zhou, Cheng;Zhu, Xiaoxiang;Liang, Dajian;Wang, Zeyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2250-2261
    • /
    • 2020
  • Accurate localization of radioactive materials is crucial in homeland security and radiological emergencies. Coded-aperture gamma camera is an interesting solution for such applications and can be developed into portable real-time imaging devices. However, traditional reconstruction methods cannot effectively deal with signal-independent noise, thereby hindering low-noise real-time imaging. In this study, a novel reconstruction method with excellent noise-suppression capability based on a multi-layer perceptron (MLP) is proposed. A coded-aperture gamma camera based on pixel detector and coded-aperture mask was constructed, and the process of radioactive source imaging was simulated. Results showed that the MLP method performs better in noise suppression than the traditional correlation analysis method. When the Co-57 source with an activity of 1 MBq was at 289 different positions within the field of view which correspond to 289 different pixels in the reconstructed image, the average contrast-to-noise ratio (CNR) obtained by the MLP method was 21.82, whereas that obtained by the correlation analysis method was 5.85. The variance in CNR of the MLP method is larger than that of correlation analysis, which means the MLP method has some instability in certain conditions.

Tracking and Recognition of vehicle and pedestrian for intelligent multi-visual surveillance systems (지능형 다중 화상감시시스템을 위한 움직이는 물체 추적 및 보행자/차량 인식 방법)

  • Lee, Saac;Cho, Jae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.435-442
    • /
    • 2015
  • In this paper, we propose a tracking and recognition of pedestrian/vehicle for intelligent multi-visual surveillance system. The intelligent multi-visual surveillance system consists of several fixed cameras and one calibrated PTZ camera, which automatically tracks and recognizes the detected moving objects. The fixed wide-angle cameras are used to monitor large open areas, but the moving objects on the images are too small to view in detail. But, the PTZ camera is capable of increasing the monitoring area and enhancing the image quality by tracking and zooming in on a target. The proposed system is able to determine whether the detected moving objects are pedestrian/vehicle or not using the SVM. In order to reduce the tracking error, an improved camera calibration algorithm between the fixed cameras and the PTZ camera is proposed. Various experimental results show the effectiveness of the proposed system.

The Design of MSC(Multi-Spectral Camera) Calibration Operation

  • Yong Sang-Soon;Kang Geum-Sil;Jang Young-Jun;Kim Jong-Ah;Kang Song-Doug;Paik Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.601-603
    • /
    • 2004
  • Multi-Spectral Camera(MSC) is a payload on the KOMPSAT -2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of $20\%$ over the mission lifetime of 3 years with the functions of programmable gain! offset and onboard image data compression/storage. MSC instrument has one(1) channel for panchromatic Imaging and four(4) channel for multi-spectral Imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). In this paper, the configuration, the interface of MSC hardware and the MSC operation concept are described. And the method of the MSC calibration are described and the design of MSC calibration operation to measure the change of MSC after Launch & Early Operation(LEOP) and normal mission operations are discussed and analyzed.

  • PDF

The Design of MSC(Multi-Spectral Camera) System Operation

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Park, Jong-Euk;Paik, Hong-Yul;Ra, Sung-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.825-827
    • /
    • 2003
  • Multi-Spectral Camera(MSC) is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a ground sample distance (GSD) of 1 m over the entire field of view (FOV) at altitude 685 Km. The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/ offset and on-board image data compression/storage. The MSC instrument has one(1) channel for panchromatic imaging and four(4) channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI CCD Focal Plane Array (FPA). In this paper, the architecture and function of MSC hardware including electrical interface and the operation concept which have been established based on the mission requirements are described. And the design and the preparation of MSC system operation are analyzed and discussed.

  • PDF

Multi-view Generation using High Resolution Stereoscopic Cameras and a Low Resolution Time-of-Flight Camera (고해상도 스테레오 카메라와 저해상도 깊이 카메라를 이용한 다시점 영상 생성)

  • Lee, Cheon;Song, Hyok;Choi, Byeong-Ho;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.239-249
    • /
    • 2012
  • Recently, the virtual view generation method using depth data is employed to support the advanced stereoscopic and auto-stereoscopic displays. Although depth data is invisible to user at 3D video rendering, its accuracy is very important since it determines the quality of generated virtual view image. Many works are related to such depth enhancement exploiting a time-of-flight (TOF) camera. In this paper, we propose a fast 3D scene capturing system using one TOF camera at center and two high-resolution cameras at both sides. Since we need two depth data for both color cameras, we obtain two views' depth data from the center using the 3D warping technique. Holes in warped depth maps are filled by referring to the surrounded background depth values. In order to reduce mismatches of object boundaries between the depth and color images, we used the joint bilateral filter on the warped depth data. Finally, using two color images and depth maps, we generated 10 additional intermediate images. To realize fast capturing system, we implemented the proposed system using multi-threading technique. Experimental results show that the proposed capturing system captured two viewpoints' color and depth videos in real-time and generated 10 additional views at 7 fps.

Development of the Near Infrared Camera System for Astronomical Application

  • Moon, Bong-Kon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this paper, I present the domestic development of near infrared camera systems for the ground telescope and the space satellite. These systems are the first infrared instruments made for astronomical observation in Korea. KASINICS (KASI Near Infrared Camera System) was developed to be installed on the 1.8m telescope of the Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. KASINICS is equipped with a $512{\times}512$ InSb array enable L band observations as well as J, H, and Ks bands. The field-of-view of the array is $3.3'{\times}3.3'$ with a resolution of 0.39"/pixel. It employs an Offner relay optical system providing a cold stop to eliminate thermal background emission from the telescope structures. From the test observation, limiting magnitudes are J=17.6, H=17.5, Ks=16.1 and L(narrow)=10.0 mag at a signal-to-noise ratio of 10 in an integration time of 100 s. MIRIS (Multi-purpose InfraRed Imaging System) is the main payload of the STSAT-3 in Korea. MIRIS Space Observation Camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}{\times}3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI of 30 layers, and GFRP pipe support in the system. Opto-mechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform the Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

  • PDF

Detection of Entry/Exit Zones for Visual Surveillance System using Graph Theoretic Clustering (그래프 이론 기반의 클러스터링을 이용한 영상 감시 시스템 시야 내의 출입 영역 검출)

  • Woo, Ha-Yong;Kim, Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • Detecting entry and exit zones in a view covered by multiple cameras is an essential step to determine the topology of the camera setup, which is critical for achieving and sustaining the accuracy and efficiency of multi-camera surveillance system. In this paper, a graph theoretic clustering method is proposed to detect zones using data points which correspond to entry and exit events of objects in the camera view. The minimum spanning tree (MST) is constructed by associating the data points. Then a set of well-formed clusters is sought by removing inconsistent edges of the MST, based on the concepts of the cluster balance and the cluster density defined in the paper. Experimental results suggest that the proposed method is effective, even for sparsely elongated clusters which could be problematic for expectation-maximization (EM). In addition, comparing to the EM-based approaches, the number of data required to obtain stable outcome is relatively small, hence shorter learning period.

Real-time object tracking in Multi-Camera environments (다중 카메라 환경에서의 실시간 객체 추적)

  • 조상현;강행봉
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.691-693
    • /
    • 2004
  • 비디오 시퀀스에서의 객체 추적은 보안 및 감시 시스템(Security and surveillance system), 비디오 원격 회의(Video teleconferencing)등과 같이 컴퓨터 비전 응용 분야에 널리 이용되어, 정정 그 중요성이 증가하고 있다 여러 가지 이유로 인친 카메라 덜(View)로부터 객체의 가시 상태가 변하는 경우, 하나의 뷰만을 이용해서는 좋은 결과를 가지기 어렵기 때문에 본 논문에서는 객체가 가장 잘 나타나는 뷰를 선택해서 객체를 추적하는 방법을 제안한다. 각각의 카메라 뷰에서 객체를 추적하기 위해 본 논문에서는 다중 후보가 결합된 Mean-shift 알고리즘을 이용한다. 제안된 시스템의 경우, 복잡한 환경으로 인해 객체의 가시 상태가 변하는 환경에서 단일 뷰를 이용하는 경우와 비교해 더 나은 성능을 가질 수 있었다.

  • PDF

The Development of Multi-view point Image Interpolation Method Using Real-image

  • Yang, Kwang-Won;Park, Young-Bin;Huh, Kyung-Bin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.129.1-129
    • /
    • 2001
  • In this paper, we present an approach for matching images from finding interesting points and applying new image interpolation algorithm. New algorithms are developed that automatically align the input images match them and reconstruct 3-D surfaces. The interpolation algorithm is designed to cope with simple shapes. The proposed image interpolation algorithm generate a rotation image about vertical axes by an any angle from 4 base images. Each base image that was obtained from CCD camera has an angle difference of 90$^{\circ}$ The proposed image interpolation algorithm use the geometric analysis of image and depth information.

  • PDF

Depth-based Mesh Modeling for Virtual Environment Generation (가상 환경 생성을 위한 깊이 기반 메쉬 모델링)

  • 이원우;우운택
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.111-114
    • /
    • 2003
  • In this paper, we propose a depth-based mesh modeling method to generate virtual environment. The proposed algorithm constructs mesh model from unorganized point cloud obtained from a multi-view camera. We separate the point cloud consisting objects from the background. Then, we apply triangulation to each object and background. Since the objects and the background are modeled independently, it is possible to construct effective virtual environment. The application of proposed modeling method is applicable to entertainment, such as movie and video game and effective virtual environment generation.

  • PDF