• Title/Summary/Keyword: Multi-transmit

Search Result 485, Processing Time 0.019 seconds

QoS Routing Protocol using multi path in Unidirectional Mobile Ad Hoc Networks (단방향 이동 Ad Hoc 망에서의 다중경로를 이용한 QoS 라우팅 프로토콜)

  • Kang, Kyeong-In;Park, Kyong-Bae;Yoo, Choong-Yul;Jung, Chan-Hyeok;Lee, Kwang-Bae;Kim, Hyun-Ug
    • The KIPS Transactions:PartC
    • /
    • v.9C no.6
    • /
    • pp.935-944
    • /
    • 2002
  • It is the Mobile Ad Hoc Networks that constituted with serveral mobile node that can communicate with other mobile nodes. Until now, there were no routing protocols considering such as Multimediadata, VOD (Video On Demand), which is required of lots of bandwidth in Mobile Ad Hoc Network, io we are in the need of QoS (Quality of Service)routing protocol to transmit the data packets faster and more accurate. Also, there are an unidirectional links due to asymmetric property of mobile terminals or current wireless environments on practical mobile ad hoc networks. However, at present, the existing mobile ad hoc routing protocols are implemented to support only bidirectional links. In this paper, we propose the Advanced Routing routing protocol in order to implement a new routing protocol, which is fit to mobile ad hoc networks containing unidirectional links and to support QoS service. For the performance evaluation, we use NS-2 simulator of U.C. Berkeley. We could get not only increased received data rate and decreased average route discovery time, but also network load decreases with compared Best effort service.

Downlink Performance Analysis for Cell Range Expansion Bias in Heterogeneous Mobile Communication Networks (이종 이동통신 네트워크에서 셀 확장 편향치에 따른 하향 링크 성능 분석)

  • Ban, Tae-Won;Jung, Bang Chul;Jo, Jung-Yeon;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2806-2811
    • /
    • 2013
  • New technologies such as multi-antenna and small cell were proposed as key technology for the next generation mobile system to cope with the explosively increasing mobile data traffic. In particular, heterogeneous mobile communication network which can improve spatial reuse factor by exploiting macro and small cells simultaneously is attracting attention. However, the heterogeneous network has a problem that the utilization of small cells becomes low because the transmit power of macro base stations is much higher than that of small base stations and then the probability that mobile stations are attached to the macro base stations becomes high. This problem is dominant in uplink. The concept of cell range expansion bias to mitigate the problem was proposed by 3GPP and the corresponding standardization is in progress. In this paper, we analyze the downlink performance of the heterogeneous mobile communication network based on a system level simulator with the cell range expansion bias in terms of average cell spectral efficiency.

Drone Deployment Using Coverage-and-Energy-Oriented Technique in Drone-Based Wireless Sensor Network (드론 기반 무선 센서 네트워크에서의 커버리지와 에너지를 고려한 드론 배치)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.15-22
    • /
    • 2019
  • Awireless sensor network utilizes small sensors with a low cost and low power being deployed over a wide area. They monitor the surrounding environment and gather the associated information to transmit it to a base station via multi-hop transmission. Most of the research has mainly focused on static sensors that are located in a fixed position. Unlike a wireless sensor network based on static sensors, we can exploit drone-based technologies for more efficient wireless networks in terms of coverage and energy. In this paper, we introduce a transmission power model and a video encoding power model to design the network environment. We also explain a priority mapping scheme, and deploy drones oriented for network coverage and energy consumption. Through our simulations, this research shows coverage and energy improvements in adrone-based wireless sensor network with fewer sensors, compared to astatic sensor-based wireless sensor network. Concretely, coverage increases by 30% for thedrone-based wireless sensor network with the same number of sensors. Moreover, we save an average of 25% with respect to the total energy consumption of the network while maintaining the coverage required.

A Study on the Prediction Method of Information Exchange Requirement in the Tactical Network (전술네트워크의 정보교환요구량 예측 방법에 관한 연구)

  • Pokki Park;Sangjun Park;Sunghwan Cho;Junseob Kim;Yongchul Kim
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.95-105
    • /
    • 2022
  • The Army, Navy, and Air Force are making various efforts to develop a weapon system that incorporates the 4th industrial revolution technology so that it can be used in multi-domain operations. In order to effectively demonstrate the integrated combat power through the weapon system to which the new technology is applied, it is necessary to establish a network environment in which each weapon system can transmit and receive information smoothly. For this, it is essential to analyze the Information Exchange Requirement(IER) of each weapon system, but many IER analysis studies did not sufficiently reflect the various considerations of the actual tactical network. Therefore, this study closely analyzes the research methods and results of the existing information exchange requirements analysis studies. In IER analysis, the size of the message itself, the size of the network protocol header, the transmission/reception structure of the tactical network, the information distribution process, and the message occurrence frequency. In order to be able to use it for future IER prediction, we present a technique for calculating the information exchange requirement as a probability distribution using the Poisson distribution and the probability generating function. In order to prove the validity of this technique, the results of the probability distribution calculation using the message list and network topology samples are compared with the simulation results using Network Simulator 2.

Multi-user Diversity Scheduling Methods Using Superposition Coding Multiplexing (중첩 코딩 다중화를 이용한 다중 사용자 다이버시티 스케줄링 방법)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.332-340
    • /
    • 2010
  • In this paper, we deal with multi-user diversity scheduling methods that transmit simultaneously signals from multiple users using superposition coding multiplexing. These methods can make various scheduling methods be obtained, according to strategies for user selection priority from the first user to the first-following users, strategies for per-user power allocation, and resulting combining strategies. For the first user selection, we consider three strategies such as 1) higher priority for a user with a better channel state, 2) following the proportional fair scheduling (PFS) priority, 3) higher priority for a user with a lower average serving rate. For selection of the first-following users, we consider the identical strategies for the first user selection. However, in the second strategy, we can decide user priorities according to the original PFS ordering, or only once an additional user for power allocation according to the PFS criterion by considering a residual power and inter-user interference. In the strategies for power allocation, we consider two strategies as follows. In the first strategy, it allocates a power to provide a permissible per-user maximum rate. In the second strategy, it allocates a power to provide a required per-user minimum rate, and then it reallocates the residual power to respective users with a rate greater than the required minimum and less than the permissible maximum. We consider three directions for scheduling such as maximizing the sum rate, maximizing the fairness, and maximizing the sum rate while maintaining the PFS fairness. We select the max CIR, max-min fair, and PF scheduling methods as their corresponding reference methods [1 and references therein], and then we choose candidate scheduling methods which performances are similar to or better than those of the corresponding reference methods in terms of the sum rate or the fairness while being better than their corresponding performances in terms of the alternative metric (fairness or sum rate). Through computer simulations, we evaluate the sum rate and Jain’s fairness index (JFI) performances of various scheduling methods according to the number of users.