• Title/Summary/Keyword: Multi-tip

Search Result 171, Processing Time 0.027 seconds

Crack initiation mechanism and meso-crack evolution of pre-fabricated cracked sandstone specimens under uniaxial loading

  • Bing Sun;Haowei Yang;Sheng Zeng;Yu Yin;Junwei Fan
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.597-609
    • /
    • 2023
  • The instability and failure of engineered rock masses are influenced by crack initiation and propagation. Uniaxial compression and acoustic emission (AE) experiments were conducted on cracked sandstone. The effect of the crack's dip on the crack initiation was investigated using fracture mechanics. The crack propagation was investigated based on stress-strain curves, AE multi-parameter characteristics, and failure modes. The results show that the crack initiation occurs at the tip of the pre-fabricated crack, and the crack initiation angle increases from 0° to 70° as the dip angle increases from 0° to 90°. The fracture strength kcr is derived varies in a U-shaped pattern as β increased, and the superior crack angle βm is between 36.2 and 36.6 and is influenced by the properties of the rock and the crack surface. Low-strength, large-scale tensile cracks form during the crack initiation in the cracked sandstone, corresponding to the start of the AE energy, the first decrease in the b-value, and a low r-value. When macroscopic surface cracks form in the cracked sandstone, high-strength, large-scale shear cracks form, resulting in a rapid increase in the AE energy, a second decrease in the b-value and an abrupt increase in the r-value. This research has significant theoretical implications for rock failure mechanisms and establishment of damage indicators in underground engineering.

Experimental Study of Effect of CO2 Addition on Oxy-Fuel Combustion in Triple Concentric Multi-Jet Burner (다공 동축 버너를 이용한 순산소 연소에서 CO2 첨가가 화염에 미치는 영향에 관한 실험적 연구)

  • Kim, Seung-Hwan;Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.409-416
    • /
    • 2010
  • The use of oxy-fuel combustion and flue gas recirculation (FGR) for $CO_2$ reduction has been studied by many researchers. This study focused on the characteristics of oxy-fuel combustion and the effects of $CO_2$ addition from the point of view of oxygen feeding ratio (OFR) and the position of $CO_2$ addition in order to reproduce an FGR system with a triple concentric multi-jet burner. Oxy-fuel combustion was stable at all OFRs at a fuel flow-rate of 15 lpm, which corresponds to an equivalence ratio of 0.93; however, the structure and length of the flame varied at different OFRs. When $CO_2$ was added in oxy-fuel combustion, various stability modes such as stable, transient, quasistable, unstable, and blow-out were observed. The temperature in the combustion chamber decreased upon $CO_2$ addition in all conditions, and the maximum reduction in temperature was below 1800 K. $CO_2$ concentration with respect to height varied with the volume percent of $CO_2$ at the nozzle tip.

Estimation of Cavitation Bubble Distribution Using Multi-Frequency Acoustic Signals (다중 주파수를 이용한 캐비테이션 기포의 분포량 추정)

  • Kim, Dae-Uk;La, Hyoung-Sul;Choi, Jee-Woong;Na, Jung-Yul;Kang, Don-Hyug
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.198-207
    • /
    • 2009
  • Distribution of cavitation bubbles relative to change of the sound speed and attenuation in the water was estimated using acoustic signal from 20 to 300 kHz in two cases that cavitation bubbles exist and do not exist. To study generation and extinction property of cavitation bubble, bubble distribution was estimated in three cases: change of rotation speed (3000-4000 rpm), surface area of blade ($32-98\;mm^2$) and elapsed time (30-120 sec). As a result, the radii of the generated bubbles ranged from 10 to $60{\mu}m$, and bubble radius of $10-20{\mu}m$ and $20-30{\mu}m$ was accounted for 45 and 25% of the total number of cavitation bubbles, respectively. And generation bubble population correlated closely with the rotating speed of the blades but did not correlate with the surface area of blade. It was observed that 80% of total bubble population disappeared within 2 minutes. Finally, acoustic data of bubble distribution was compared with optical data.

Dynamic Behavior of Large Diameter steel Pipe Piles during driving (대구경 강관말뚝의 항타시 동적 거동)

  • 이영남;이종섭
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.141-148
    • /
    • 2000
  • For the construction of 4.8km long Multi-Purpose Jamuna Bridge in Bangladesh, 2 or 3 large diameter open-ended steel pipe piles were used for the foundation of piers. A total of 123 piles were driven for 50 piers and 2 test piles from the river bed through the normally-consolidated upper sand layer and rested n top of gravel layer. Two types of piles, having 3.15 or 2.50m diameter and variable wall thickness in the range of 40 to 60mm, were driven to the depths of 69 to 74m with the rake of 6:1 by connecting 2 or 3 pieces of short piles. Dynamic pile tests were performed on 24 selected piles during pile driving and soil plug length inside the pile was also measured after driving of each short section.These piles were plugged with soil to, though slightly affected by pile diameters, about 75% of total length of pile driven. Active plug at the tip of pile contributed substantial amount of inner skin friction to the total capacity. Piles soon after driving showed a skin-friction dominant pile behaviour, tat is, 90% of total capacity being developed by skin resistance. Quakes values and Smith damping factors were almost constant regardless of pile diameters. This result reflects the influence of uniform soil condition at the site.

  • PDF

The Study on the Characteristics of Mode I Crack for Cross-ply Carbon/Epoxy Composite Laminates Based on Stress Fields (응력장을 이용한 직교적층 탄소섬유/에폭시 복합재 적층판의 모드 I 균열 특성 연구)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Woo, Kyeong-Sik
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.327-334
    • /
    • 2019
  • The delamination is a special mode of failure occurring in composite laminates. Several numerical studies with finite element analysis have been carried out on the delamination behavior of unidirectional composite laminates. On the other hand, the fracture for the multi-directional composite laminates may occur not only along the resin-fiber interface between plies known as interply or interlaminar fracture but also within a ply known as interyarn or intralaminar fracture accompanied by matrix cracking and fiber bridging. In addition, interlaminar and intralaminar cracks appear at irregular proportions and intralaminar cracks proceeded at arbitrary angle. The probabilistic analysis method for the prediction of crack growth behavior within a layer is more advantageous than the deterministic analysis method. In this paper, we analyze the crack path when the mode I load is applied to the cross-ply carbon/epoxy composite laminates and collect and analyze the probability data to be used as the basis of the probabilistic analysis in the future. Two criteria for the theoretical analysis of the crack growth direction were proposed by analyzing the stress field at the crack tip of orthotropic materials. Using the proposed method, the crack growth directions of the cross-ply carbon/epoxy laminates were analyzed qualitatively and quantitatively and compared with experimental results.

The Changing Patterns of Antibiotic Susceptibility for Acinetobacter baumannii in Pediatric Burn Patients (소아 화상환자에서 배양된 Acinetobacter baumannii에 대한 항생제 감수성 양상의 변화)

  • Lee, Sang-Min;Lee, So-Yeon;Kim, Young-Ho;Lee, Kyu-Man;Jang, Young-Chul;Kim, Kwang-Nam
    • Pediatric Infection and Vaccine
    • /
    • v.15 no.2
    • /
    • pp.146-151
    • /
    • 2008
  • Purpose : Multidrug-resistant Acinetobacter baumannii (A. baumannii) is recognized to be the most difficult pathogen to control and treat in pediatric burn centers. We analyzed the antibiotic susceptibility pattern of A. baumannii in our pediatric burn intensive care unit during the past 7 years. Methods : We retrospectively evaluated 56 patients (105 samples) under the age 15 years and who were infected with A. baumannii between January 1999 and December 2005. Results : Fot the 56 patients, the ratio of males to females was 1.15:1 and the median age was 48.3 months. The sites of 105 isolates were wounds (65%), sputum (20%), blood (6 %), cutdown tips (5%), endo-tip tubes (2%) and urine (2%). A. baumannii presented yearround. The annual antimicrobial resistance rate increased and the multidrug resistant rate for two or more antibiotics was 93.33%. For 3 patients in whom resistance emerged, the interval period between the susceptible and resistant strains after antibiotic use was a mean of 10 days. The A. baumannii isolated from blood were all multi-drug resistant pathogens. Conclusion : Multidrug resistance of A. baumannii is increasing. Strict infection control guidelines and active surveillance are needed for the prevention and treatment of A. baumannii in hospitals.

  • PDF

Piezocone Neural Network Model for Estimation of Preconsolidation Pressure of Korean Soft Soils (국내 연약지반의 선행압밀하중 추정을 위한 피에조콘 인공신경망 모델)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.77-87
    • /
    • 2004
  • In this paper a back-propagation neural network model is developed to estimate the preconsolidation pressure of Korean soft soils based on 176 oedometer tests and 63 piezocone test results, which were compiled from 11 sites - western and southern parts of Korea. Only 147 data were used for the training of the neural network and 29 data, which were not used during the training phase, were used for the verification of trained network. Empirical and theoretical models were compared with the developed neural network model. A simple 4-4-9-1 multi-layered neural network has been developed. The cone tip resistance $q_T$ penetration pore pressure $u_2$, total overburden pressure $\sigma_{vo}$ and effective overburden pressure $\sigma'_{vo}$ were selected as input variables. The developed neural network model was validated by comparing the prediction results of the proposed neural network model for the new data which were not used for the training of the model with the measured preconsolidation pressures. It can also predict more precise and reliable preconsolidation pressures than the analytical and empirical model. Furthermore, it can be carefully concluded that neural network model can be used as a generalized model for prediction of preconsolidation pressure throughout Korea since developed model shows good performance for the new data which were not used in both training and testing data.

Field emission properties of Ag-Cu-alloy coated CNT-emitters (Ag-Cu합금 코팅된 탄소나노튜브의 전계방출 특성)

  • Lee, Seung-Youb;Ryul, Dong-Heon;Hong, Jun-Yong;Yeom, Min-Hyeng;Yang, Ji-Hoon;Choi, Won-Chel;Kwon, Myeng-Hoi;Park, Chong-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.291-297
    • /
    • 2007
  • The field emission properties of CNT-emitters coated with Ag-Cu alloy have been investigated. The vertical aligned multi-walled CNTs were synthesized by dc-plasma enhanced chemical vapor deposition (dc-PECVD) and the Ag-Cu alloy was coated by using dc-magnetron sputter. The morphology of alloy-coated and un-coated CNT-emitters was observed by using SEM and their field emission properties were also measured. Annealing the AgCu-coated CNTs at temperature more than ${\sim}700^{\circ}C$, the Ag-Cu alloy was diffused to and aggregated on the top of the CNT as a Q-tip. A significant progress on the field emission was not observed with coating Ag-Cu alloy on the CNTs, but a certain improvement in a resistance against oxygen gas was made confirmation. It seems to be due to inertness of Ag-Cu alloy on the CNTs.

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

Serotypes and Antimicrobial Susceptibility of Streptococcus pneumoniae (폐구균의 혈청형 분포와 항생제 감수성에 관한 연구)

  • Choi, Kyoung-Min;Kim, Jeong-Hyun;Shin, Kyoung-Mi;Yeon, Soo-In;Shin, Jeon-Soo;Yong, Dong-Eun;Lee, Kyoung-Won;Kim, Dong-Soo
    • Pediatric Infection and Vaccine
    • /
    • v.10 no.2
    • /
    • pp.159-166
    • /
    • 2003
  • Purpose : Streptococcus pneumoniae is part of the normal flora but is also responsible for causing many invasive diseases such as pneumonia, meningitis, and sepsis in addition to noninvasive diseases such as otitis in children. Multi-drug resistant strains has raised a lot of concern worldwide and thus the importance of prevention has been emphasized. We have analyzed the current serotypes and antibiotic sensitivity of each serotype as a baseline study to estimate the efficacy of the pneumococcal vaccine in Korean children. Methods : One hundred sixteen cases of pneumococcus cultured at Yonsei Medical Center from September 2001 to January 2003 were analyzed. The serotyping was done with the Quellung reaction and penicillin resistance was tested using the oxacillin disc diffusion method. Results : Pneumococcus were cultured from the sputum in 76 cases(65.5%), from the blood in 13 cases(11.2%), from the ear discharge in 12 cases(10.3%), from the throat in 7 cases(6.0%), from the nasal cavity in 2 cases(1.7%), and one case(0.9%) each from the cerebrospinal fluid, eye discharge, peritoneal fluid, post-operational wound, brain abscess, and catheter tip. Serotyping was possible with 98 cases and the following serotypes were found; 15 cases of type 19F(15.3%), 11 cases of 19A(11.2%), 8 cases of 11A(8.2%), 7 cases each of 6A, 14 and 3(7.1%), 6 cases each of 35, 6B and 23F(6.1%). Eighty two cases(70.7%) out of 116 cases were penicillin resistant and serotypes 19F, 19A, 11A, 23F, 6A, 9V constituted the majority, 48 cases(59.8%). These serotypes showed resistance to cotrimoxazole (74.4%), tetracycline(69.5%), and erythromycin(90.3%) as well. In the 22 cases cultured from children, 19A and 19F were found in 25.0%, 6A, 6B, and 23F in 10.0%, 11A, 14, 19, and 29 in 5.0%. Fifty percent(10/20) of the clinical isolates were represented in the current 7-valent pneumococcal protein conjugate vaccine, and 85%(17/20) when the cross-reacting serotypes were included. Penicillin resistance was found in 86.4%(19/22). Conclusion : The percentage of serotypes included in the 7 valent pneumococcal protein conjugate vaccine found in our study was 40.8% which was less than other prior studies. In anticipation of a change of pneumococcal serotypes, a nationwide multicenter study is needed before the initiation of pneumococcal vaccines in Korea.

  • PDF