• 제목/요약/키워드: Multi-temporal Image Information

검색결과 101건 처리시간 0.021초

LAND COVER CLASSIFICATION BY USING SAR COHERENCE IMAGES

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.76-79
    • /
    • 2008
  • This study presents the use of multi-temporal JERS-1 SAR images to the land cover classification. So far, land cover classified by high resolution aerial photo and field survey and so on. The study site was located in Non-san area. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then classified land cover. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass

  • PDF

작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험 (Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images)

  • 박소연;김예슬;나상일;박노욱
    • 대한원격탐사학회지
    • /
    • 제36권5_1호
    • /
    • pp.807-821
    • /
    • 2020
  • 이 연구에서는 작물 모니터링을 위한 시계열 고해상도 영상 구축을 위해 기존 중저해상도 위성영상의 융합을 위해 개발된 대표적인 시공간 융합 모델의 적용성을 평가하였다. 특히 시공간 융합 모델의 원리를 고려하여 입력 영상 pair의 특성 차이에 따른 모델의 예측 성능을 비교하였다. 농경지에서 획득된 시계열 Sentinel-2 영상과 RapidEye 영상의 시공간 융합 실험을 통해 시공간 융합 모델의 예측 성능을 평가하였다. 시공간 융합 모델로는 Spatial and Temporal Adaptive Reflectance Fusion Model(STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model(SPSTFM)과 Flexible Spatiotemporal DAta Fusion(FSDAF) 모델을 적용하였다. 실험 결과, 세 시공간 융합 모델은 예측 오차와 공간 유사도 측면에서 서로 다른 예측 결과를 생성하였다. 그러나 모델 종류와 관계없이, 예측 시기와 영상 pair가 획득된 시기 사이의 시간 차이보다는 예측 시기의 저해상도 영상과 영상 pair의 상관성이 예측 능력 향상에 더 중요한 것으로 나타났다. 또한 작물 모니터링을 위해서는 오차 전파 문제를 완화할 수 있는 식생지수를 시공간 융합의 입력 자료로 사용해야 함을 확인하였다. 이러한 실험 결과는 작물 모니터링을 위한 시공간 융합에서 최적의 영상 pair 및 입력 자료 유형의 선택과 개선된 모델 개발의 기초정보로 활용될 수 있을 것으로 기대된다.

랜덤포레스트와 Sentinel-2를 이용한 식생 분류의 입력특성 최적화 (Optimization of Input Features for Vegetation Classification Based on Random Forest and Sentinel-2 Image)

  • 이승민;정종철
    • 한국지리정보학회지
    • /
    • 제23권4호
    • /
    • pp.52-67
    • /
    • 2020
  • 최근 북극은 매년 영구 동토층이 녹아 눈으로 덮인 땅이 드러나고 있어 해당 지역 관리를 위한 공간정보가 필요하다. 한국의 국토지리정보원(NGII)은 극지방의 공간정보를 구축하여 극지공간정보 서비스를 제공하고 있으나, 식생 정보는 제공되지 않고 있으므로 식생 공간정보 구축을 위한 추가적인 연구가 필요하다. 본 연구에서는 북극 스발바르제도의 뉘올레순 지역에 대한 식생 분류를 수행하기 위해 다중 시기의 Sentinel-2 영상을 사용하였다. 전처리 단계에서는 다중 시기 Sentinel-2 영상으로부터 10개 밴드와 6가지 정규 지수식을 생성하였다. 영상 분류는 8개 속성에 대한 토지피복분류를 통해 전체 식생 영역을 추출하는 과정과 전체 식생 영역 내에서 다시 세분류를 수행하는 과정으로 이루어졌다. 영상 분류 알고리즘은 OOB(Out-Of-Bag)를 통해 정확도 평가 및 변수 중요도를 산정할 수 있는 랜덤포레스트를 사용하였다. 전체 정확도는 다시기 영상이 사용되었을 경우와 식생 지수가 추가되었을 경우의 이점을 확인하기 위해 사용된 영상 수에 따라 각각 정확도를 산정하였다. 단일시기의 Sentinel-2 영상은 전체 정확도가 77%였으나, 7개의 다중 시기 Sentinel-2 영상을 기반으로 학습하였을 때, 81%로 향상되었다. 또한, 식생 지수가 추가로 사용된 학습에서 전체 정확도가 약 83%로 향상되었다. 식생 분류 시 변수 중요도는 적색, 녹색, 단파적외선-1 밴드가 가장 높은 변수로 선정되었다. 본 연구는 극지방의 식생에 대한 분류를 수행할 시 입력특성을 최적화하는 기초 연구로 활용될 수 있을 것으로 판단된다.

Color Enhancement in Images with Single CCD camera in Night Vision Environment

  • Hwang, Wonjun;Ko, Hanseok
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.58-61
    • /
    • 2000
  • In this paper, we describe an effective method to enhance the color night images with spatio-temporal multi-scale retinex focused to the Intelligent Transportation System (ITS) applications such as in the single CCD based Electronic Toll Collection System (ETCS). The basic spatial retinex is known to provide color constancy while effectively removing local shades. However, it is relatively ineffective in night vision enhancement. Our proposed method, STMSR, exploits the iterative time averaging of image sequences to suppress the noise in consideration of the moving vehicles in image frame. In the STMSR method, the spatial term makes the dark images distinguishable and preserves the color information day and night while the temporal term reduces the noise effect for sharper and clearer reconstruction of the contents in each image frame. We show through representative simulations that incorporating both terms in the modeling produces the output sequential images visually more pleasing than the original dim images.

  • PDF

Cloud Removal Using Gaussian Process Regression for Optical Image Reconstruction

  • Park, Soyeon;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제38권4호
    • /
    • pp.327-341
    • /
    • 2022
  • Cloud removal is often required to construct time-series sets of optical images for environmental monitoring. In regression-based cloud removal, the selection of an appropriate regression model and the impact analysis of the input images significantly affect the prediction performance. This study evaluates the potential of Gaussian process (GP) regression for cloud removal and also analyzes the effects of cloud-free optical images and spectral bands on prediction performance. Unlike other machine learning-based regression models, GP regression provides uncertainty information and automatically optimizes hyperparameters. An experiment using Sentinel-2 multi-spectral images was conducted for cloud removal in the two agricultural regions. The prediction performance of GP regression was compared with that of random forest (RF) regression. Various combinations of input images and multi-spectral bands were considered for quantitative evaluations. The experimental results showed that using multi-temporal images with multi-spectral bands as inputs achieved the best prediction accuracy. Highly correlated adjacent multi-spectral bands and temporally correlated multi-temporal images resulted in an improved prediction accuracy. The prediction performance of GP regression was significantly improved in predicting the near-infrared band compared to that of RF regression. Estimating the distribution function of input data in GP regression could reflect the variations in the considered spectral band with a broader range. In particular, GP regression was superior to RF regression for reproducing structural patterns at both sites in terms of structural similarity. In addition, uncertainty information provided by GP regression showed a reasonable similarity to prediction errors for some sub-areas, indicating that uncertainty estimates may be used to measure the prediction result quality. These findings suggest that GP regression could be beneficial for cloud removal and optical image reconstruction. In addition, the impact analysis results of the input images provide guidelines for selecting optimal images for regression-based cloud removal.

다시기 항공사진으로부터 영상대차법과 영상대비법을 이용한 소도읍 지역의 변화 검출 (Change Detection of a Small Town Area from Multi-Temporal Aerial Photos using Image Differencing and Image Ratio Techniques)

  • 이진덕;연상호;이동호
    • 한국지리정보학회지
    • /
    • 제11권1호
    • /
    • pp.116-124
    • /
    • 2008
  • 다시기, 다축척의 팬크로매틱 항공사진을 통하여 소도시지역의 변화탐지를 시도하였다. 1987년과 1996년에 각각 촬영된 축척 1:20,000 사진과 2000년에 촬영된 1:37,500의 사진에 대하여 기하보정과 대조처리, 그리고 영상재배열을 통하여 좌표계 일치, 밝기값 조정, 공간해상도 일치 등 영상들 간에 동일한 조건을 갖도록 해 주는 사전작업을 행하였다. 다른 시기의 항공사진들 간에 영상대차법과 영상대비법을 각각 적용하여 변화지역을 탐지하였다. 단일밴드의 팬크로매틱 항공사진으로부터 지형 및 인공지물의 변화를 추출할 수 있었으며, 두 기법으로 각각 변화탐지한 결과를 비교하여 제시하였다.

  • PDF

도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석 (Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area)

  • 염준호;한유경;김용일
    • 대한공간정보학회지
    • /
    • 제21권2호
    • /
    • pp.93-98
    • /
    • 2013
  • 다중 시기에 수집된 고해상도 위성영상은 효과적인 도심지 분석과 모니터링을 위한 필수적인 자료이다. 그러나 같은 지역에 대해 다른 센서에서 수집된 영상은 물론, 동일 센서 영상이라 하더라도 두 영상간의 기하학적 위치정보가 서로 일치하지 않는 문제가 존재한다. 따라서 다중 영상의 효과적인 활용을 위해서는 영상 정합을 위해 매칭 포인트를 추출하는 일이 필수적이다. 그러나 도심지의 경우 건물, 교량, 나무, 기타 인공 구조물 등의 영향으로 넓은 영역에 그림자가 분포하며 그림자의 방향과 강도는 영상 수집 시기에 따라 달라지기 때문에 정확한 매칭 포인트를 추출하는데 어려움이 있다. 본 연구에서는 대표적인 매칭점 추출 기법인 SIFT(Scale-Invariant Feature Transform) 기법과 자동 그림자 추출 기법을 적용하여 도심지역의 그림자가 영상 정합에 미치는 영향을 분석하였다. 영상 분할을 통해 생성된 세그먼트의 분광 및 공간인자를 이용하여 그림자 객체를 추출하였으며 이 때 건물 버퍼 영역을 그림자의 인접정보로서 활용하였다. SIFT 기법을 통해 추출된 매칭점이 그림자에 위치하는 경우 이를 제거하고 영상 정합을 수행하였다. 최종적으로 고해상도 위성영상의 정합에 대한 그림자의 영향을 분석하기 위해 추출된 매칭점과 정합 결과의 정확도를 정량적, 시각적으로 평가하였다.

Tensile Properties Estimation Method Using Convolutional LSTM Model

  • Choi, Hyeon-Joon;Kang, Dong-Joong
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권11호
    • /
    • pp.43-49
    • /
    • 2018
  • In this paper, we propose a displacement measurement method based on deep learning using image data obtained from tensile tests of a material specimen. We focus on the fact that the sequential images during the tension are generated and the displacement of the specimen is represented in the image data. So, we designed sample generation model which makes sequential images of specimen. The behavior of generated images are similar to the real specimen images under tensile force. Using generated images, we trained and validated our model. In the deep neural network, sequential images are assigned to a multi-channel input to train the network. The multi-channel images are composed of sequential images obtained along the time domain. As a result, the neural network learns the temporal information as the images express the correlation with each other along the time domain. In order to verify the proposed method, we conducted experiments by comparing the deformation measuring performance of the neural network changing the displacement range of images.

효율적인 보조 정보 생성을 통한 깊이지도 기반의 분산 다시점 비디오 코딩 기법 (Depth Map Based Distributed Multi-view Video Coding Scheme through an Efficient Side Information Generation)

  • 유지환;이동석;김태준;유지상
    • 한국통신학회논문지
    • /
    • 제34권10B호
    • /
    • pp.1093-1103
    • /
    • 2009
  • 본 논문에서는 효율적인 보조 정보 생성을 통한 새로운 분산 다시점 비디오 코딩 기법을 제안한다. 분산 비디오 코딩은 원영상과 디코더에서 생성한 보조 정보 간의 오차를 채널 코딩 기법으로 정정한다. 따라서 보조 정보를 정확히 만들수록 분산 비디오 코딩의 성능은 좋아지게 된다. 제안한 기법에서는 깊이지도를 기반으로 하는 다시점 비디오 코딩에 분산 비디오 코딩 기법을 적용한다. 또한 깊이지도를 이용한 3차원 워핑을 통해 인접한 시점의 영상으로부터 보조 정보를 생성하고, 3차원 워핑과 시간 축 상의 인접한 영상을 이용하는 MCTI(motion compensated temporal interpolation)를 효율적으로 혼합하여 사용한다. 실험 결과 제안한 기법으로 생성한 보조 정보는 MCTI와 3차원 위핑을 따로 사용한 방법보다 평균 0.97dB의 PSNR이 향상되었음을 알 수 있었다. 또한 R-D 곡선 상에서 동일 PSNR 대비 평균 8.01%의 비트율이 감소되었다.

Similarity Measurement using Gabor Energy Feature and Mutual Information for Image Registration

  • Ye, Chul-Soo
    • 대한원격탐사학회지
    • /
    • 제27권6호
    • /
    • pp.693-701
    • /
    • 2011
  • Image registration is an essential process to analyze the time series of satellite images for the purpose of image fusion and change detection. The Mutual Information (MI) is commonly used as similarity measure for image registration because of its robustness to noise. Due to the radiometric differences, it is not easy to apply MI to multi-temporal satellite images using directly the pixel intensity. Image features for MI are more abundantly obtained by employing a Gabor filter which varies adaptively with the filter characteristics such as filter size, frequency and orientation for each pixel. In this paper we employed Bidirectional Gabor Filter Energy (BGFE) defined by Gabor filter features and applied the BGFE to similarity measure calculation as an image feature for MI. The experiment results show that the proposed method is more robust than the conventional MI method combined with intensity or gradient magnitude.