For generating accurate land cover map over the whole Korean Peninsula, post-mosaic classification method is desirable in large area where multiple image data sets are used. We try to derive an optimal mosaic method of multi-temporal Landsat ETM+ scenes for the land cover classification over the Korea Peninsula. Total 65 Landsat ETM+ scenes were acquired, which were taken in 2000 and 2001. To reduce radiometric difference between adjacent Landsat ETM+ scenes, we apply three relative radiometric correction methods (histogram matching, 1st-regression method referenced center image, and 1st-regression method at each Landsat ETM+ path). After the relative correction, we generated three mosaic images for three seasons of leaf-off, transplanting, leaf-on season. For comparison, three mosaic images were compared by the mean absolute difference and computer classification accuracy. The results show that the mosaic image using 1st-regression method at each path show the best correction results and highest classification accuracy. Additionally, the mosaic image acquired during leaf-on season show the higher radiance variance between adjacent images than other season.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.14
no.4
/
pp.332-339
/
2014
Face classification has wide applications in security and surveillance. However, this technique presents various challenges caused by pose, illumination, and expression changes. Face recognition with long-distance images involves additional challenges, owing to focusing problems and motion blurring. Multiple frames under varying spatial or temporal settings can acquire additional information, which can be used to achieve improved classification performance. This study investigates the effectiveness of multi-frame decision-level fusion with photon-counting linear discriminant analysis. Multiple frames generate multiple scores for each class. The fusion process comprises three stages: score normalization, score validation, and score combination. Candidate scores are selected during the score validation process, after the scores are normalized. The score validation process removes bad scores that can degrade the final output. The selected candidate scores are combined using one of the following fusion rules: maximum, averaging, and majority voting. Degraded facial images are employed to demonstrate the robustness of multi-frame decision-level fusion in harsh environments. Out-of-focus and motion blurring point-spread functions are applied to the test images, to simulate long-distance acquisition. Experimental results with three facial data sets indicate the efficiency of the proposed decision-level fusion scheme.
Kim, Won-Joo;Lee, Seung-Gu;Kim, Sang-Wook;Park, Chong-Hwa
Proceedings of the KSRS Conference
/
2003.11a
/
pp.679-681
/
2003
The objectives of this research are as follows. First, to investigate methods for a national-scale land cover map based on multi-temporal classification of MODIS data and multi-spectral classification of Landsat TM data. Second, to investigate methods to p roduce ecological zone maps of Korea based on vegetation, climate, and topographic characteristics. The results of this research can be summarized as follows. First, NDVI and EVI of MODIS can be used to ecological mapping of the country by using monthly phenological characteris tics. Second, it was found that EVI is better than NDVI in terms of atmospheric correction and vegetation mapping of dense forests of the country. Third, several ecological zones of the country can be identified from the VI maps, but exact labeling requires much field works, and sufficient field data and macro-environmental data of the country. Finally, relationship between land cover types and natural environmental factors such as temperature, precipitation, elevation, and slope could be identified.
The goal of this study is to apply and evaluate the precipitation outflow in river basin using satellite data and GIS for proposing the efficient watershed management method. Not only precipitation outflow data but also various spatial data such as digital map, soil map, geologic map and multi-temporal TM images were used. Using landcover classification result and soil map were applied to estimate the average CN. The CN value of 63.37 by SCS method was produced in AMC-2 condition otherwise the result of direct estimation with observation method was 63 CN value. The relative error of two results was 0.59%. It can be possible to apply the satellite data for precipitation outflow analysis. For more accurate and credible analysis of this, the more multi-temporal satellite and real observation data will be needed.
Motor failure in manufacturing plays an important role in future A/S and reliability. Motor failure is detected by measuring sound, current, and vibration. For the data used in this paper, the sound of the car's side mirror motor gear box was used. Motor sound consists of three classes. Sound data is input to the network model through a conversion process through MelSpectrogram. In this paper, various methods were applied, such as data augmentation to improve the performance of classifying fault motors and various methods according to class imbalance were applied resampling, reweighting adjustment, change of loss function and representation learning and classification into two stages. In addition, the curriculum learning method and self-space learning method were compared through a total of five network models such as Bidirectional LSTM Attention, Convolutional Recurrent Neural Network, Multi-Head Attention, Bidirectional Temporal Convolution Network, and Convolution Neural Network, and the optimal configuration was found for motor sound classification.
Journal of Institute of Control, Robotics and Systems
/
v.21
no.1
/
pp.59-64
/
2015
In this paper, we found the usefulness of the deep belief network (DBN) in the fields of brain-computer interface (BCI), especially in relation to imagined speech. In recent years, the growth of interest in the BCI field has led to the development of a number of useful applications, such as robot control, game interfaces, exoskeleton limbs, and so on. However, while imagined speech, which could be used for communication or military purpose devices, is one of the most exciting BCI applications, there are some problems in implementing the system. In the previous paper, we already handled some of the issues of imagined speech when using the International Phonetic Alphabet (IPA), although it required complementation for multi class classification problems. In view of this point, this paper could provide a suitable solution for vowel classification for imagined speech. We used the DBN algorithm, which is known as a deep learning algorithm for multi-class vowel classification, and selected four vowel pronunciations:, /a/, /i/, /o/, /u/ from IPA. For the experiment, we obtained the required 32 channel raw electroencephalogram (EEG) data from three male subjects, and electrodes were placed on the scalp of the frontal lobe and both temporal lobes which are related to thinking and verbal function. Eigenvalues of the covariance matrix of the EEG data were used as the feature vector of each vowel. In the analysis, we provided the classification results of the back propagation artificial neural network (BP-ANN) for making a comparison with DBN. As a result, the classification results from the BP-ANN were 52.04%, and the DBN was 87.96%. This means the DBN showed 35.92% better classification results in multi class imagined speech classification. In addition, the DBN spent much less time in whole computation time. In conclusion, the DBN algorithm is efficient in BCI system implementation.
Proceedings of the Korean Society of Agricultural Engineers Conference
/
2001.10a
/
pp.59-64
/
2001
The objectives of the thesis are to propose a pattern classification method for remote sensing data using artificial neural network. First, we apply the error back propagation algorithm to classify the remote sensing data. In this case, the classification performance depends on a training data set. Using the training data set and the error back propagation algorithm, a layered neural network is trained such that the training pattern are classified with a specified accuracy. After training the neural network, some pixels are deleted from the original training data set if they are incorrectly classified and a new training data set is built up. Once training is complete, a testing data set is classified by using the trained neural network. The classification results of Landsat TM data show that this approach produces excellent results which are more realistic and noiseless compared with a conventional Bayesian method.
This paper proposes an advanced crop classification model that combines a procedure for weighted combination of spatial features extracted from multi-scale input images with a conventional convolutional neural network (CNN) structure. The proposed model first extracts spatial features from patches with different sizes in convolution layers, and then assigns different weights to the extracted spatial features by considering feature-specific importance using squeeze-and-excitation block sets. The novelty of the model lies in its ability to extract spatial features useful for classification and account for their relative importance. A case study of crop classification with multi-temporal Landsat-8 OLI images in Illinois, USA was carried out to evaluate the classification performance of the proposed model. The impact of patch sizes on crop classification was first assessed in a single-patch model to find useful patch sizes. The classification performance of the proposed model was then compared with those of conventional two CNN models including the single-patch model and a multi-patch model without considering feature-specific weights. From the results of comparison experiments, the proposed model could alleviate misclassification patterns by considering the spatial characteristics of different crops in the study area, achieving the best classification accuracy compared to the other models. Based on the case study results, the proposed model, which can account for the relative importance of spatial features, would be effectively applied to classification of objects with different spatial characteristics, as well as crops.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.12
/
pp.4476-4491
/
2021
Video service providers tend to face user network problems in the process of transmitting video streams. They strive to provide user with superior video quality in a limited bitrate environment. It is necessary to accurately determine the target bitrate range of the video under different quality requirements. Recently, several schemes have been proposed to meet this requirement. However, they do not take the impact of visual influence into account. In this paper, we propose a new multi-category model to accurately predict the target bitrate range with target visual quality by machine learning. Firstly, a dataset is constructed to generate multi-category models by machine learning. The quality score ladders and the corresponding bitrate-interval categories are defined in the dataset. Secondly, several types of spatial-temporal features related to VMAF evaluation metrics and visual factors are extracted and processed statistically for classification. Finally, bitrate prediction models trained on the dataset by RandomForest classifier can be used to accurately predict the target bitrate of the input videos with target video quality. The classification prediction accuracy of the model reaches 0.705 and the encoded video which is compressed by the bitrate predicted by the model can achieve the target perceptual quality.
이 연구에서는 C 밴드 SAR 자료이면서 서로 다른 편광 상태의 자료를 제공할 수 있는 다중 시기 Radarsat-1 자료와 ENVISAT ASAR 자료를 이용한 토지 피복 분류를 수행하였다. 다중 시기/편광 자료로부터 평균 후방산란계수, 시간적 변이도, 긴밀도 등의 특징을 기본적으로 추출하였고, 이외에 상호 비교를 위해 주성분 분석을 이용한 특징 추출을 시도하였다. 특징들을 이용한 분류기법으로는 Random Forests를 적용하였다. 충남 예당평야 일대를 대상으로 사례연구를 수행한 결과, 주성분 분석을 통한 특징과 다편광 자료를 이용하였을 때 분류 정확도가 향상되는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.