• Title/Summary/Keyword: Multi-temporal Classification

Search Result 109, Processing Time 0.03 seconds

Multi-temporal Landsat ETM+ Mosaic Method for Generating Land Cover Map over the Korean Peninsula (한반도 토지피복도 제작을 위한 다시기 Landsat ETM+ 영상의 정합 방법)

  • Kim, Sun-Hwa;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.87-98
    • /
    • 2010
  • For generating accurate land cover map over the whole Korean Peninsula, post-mosaic classification method is desirable in large area where multiple image data sets are used. We try to derive an optimal mosaic method of multi-temporal Landsat ETM+ scenes for the land cover classification over the Korea Peninsula. Total 65 Landsat ETM+ scenes were acquired, which were taken in 2000 and 2001. To reduce radiometric difference between adjacent Landsat ETM+ scenes, we apply three relative radiometric correction methods (histogram matching, 1st-regression method referenced center image, and 1st-regression method at each Landsat ETM+ path). After the relative correction, we generated three mosaic images for three seasons of leaf-off, transplanting, leaf-on season. For comparison, three mosaic images were compared by the mean absolute difference and computer classification accuracy. The results show that the mosaic image using 1st-regression method at each path show the best correction results and highest classification accuracy. Additionally, the mosaic image acquired during leaf-on season show the higher radiance variance between adjacent images than other season.

Multi-Frame Face Classification with Decision-Level Fusion based on Photon-Counting Linear Discriminant Analysis

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.332-339
    • /
    • 2014
  • Face classification has wide applications in security and surveillance. However, this technique presents various challenges caused by pose, illumination, and expression changes. Face recognition with long-distance images involves additional challenges, owing to focusing problems and motion blurring. Multiple frames under varying spatial or temporal settings can acquire additional information, which can be used to achieve improved classification performance. This study investigates the effectiveness of multi-frame decision-level fusion with photon-counting linear discriminant analysis. Multiple frames generate multiple scores for each class. The fusion process comprises three stages: score normalization, score validation, and score combination. Candidate scores are selected during the score validation process, after the scores are normalized. The score validation process removes bad scores that can degrade the final output. The selected candidate scores are combined using one of the following fusion rules: maximum, averaging, and majority voting. Degraded facial images are employed to demonstrate the robustness of multi-frame decision-level fusion in harsh environments. Out-of-focus and motion blurring point-spread functions are applied to the test images, to simulate long-distance acquisition. Experimental results with three facial data sets indicate the efficiency of the proposed decision-level fusion scheme.

Ecological land cover classification of the Korean peninsula Ecological land cover classification of the Korean peninsula

  • Kim, Won-Joo;Lee, Seung-Gu;Kim, Sang-Wook;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.679-681
    • /
    • 2003
  • The objectives of this research are as follows. First, to investigate methods for a national-scale land cover map based on multi-temporal classification of MODIS data and multi-spectral classification of Landsat TM data. Second, to investigate methods to p roduce ecological zone maps of Korea based on vegetation, climate, and topographic characteristics. The results of this research can be summarized as follows. First, NDVI and EVI of MODIS can be used to ecological mapping of the country by using monthly phenological characteris tics. Second, it was found that EVI is better than NDVI in terms of atmospheric correction and vegetation mapping of dense forests of the country. Third, several ecological zones of the country can be identified from the VI maps, but exact labeling requires much field works, and sufficient field data and macro-environmental data of the country. Finally, relationship between land cover types and natural environmental factors such as temperature, precipitation, elevation, and slope could be identified.

  • PDF

A study on Average CN Estimation in River Basin using Satellite Data

  • Kwon, Bong-kyum;Jo, Myung-Hee;Ahn, Seung-Sep;Kiyoshi, Yamada
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.499-499
    • /
    • 2002
  • The goal of this study is to apply and evaluate the precipitation outflow in river basin using satellite data and GIS for proposing the efficient watershed management method. Not only precipitation outflow data but also various spatial data such as digital map, soil map, geologic map and multi-temporal TM images were used. Using landcover classification result and soil map were applied to estimate the average CN. The CN value of 63.37 by SCS method was produced in AMC-2 condition otherwise the result of direct estimation with observation method was 63 CN value. The relative error of two results was 0.59%. It can be possible to apply the satellite data for precipitation outflow analysis. For more accurate and credible analysis of this, the more multi-temporal satellite and real observation data will be needed.

  • PDF

A Study on the Classification of Fault Motors using Sound Data (소리 데이터를 이용한 불량 모터 분류에 관한 연구)

  • Il-Sik, Chang;Gooman, Park
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.885-896
    • /
    • 2022
  • Motor failure in manufacturing plays an important role in future A/S and reliability. Motor failure is detected by measuring sound, current, and vibration. For the data used in this paper, the sound of the car's side mirror motor gear box was used. Motor sound consists of three classes. Sound data is input to the network model through a conversion process through MelSpectrogram. In this paper, various methods were applied, such as data augmentation to improve the performance of classifying fault motors and various methods according to class imbalance were applied resampling, reweighting adjustment, change of loss function and representation learning and classification into two stages. In addition, the curriculum learning method and self-space learning method were compared through a total of five network models such as Bidirectional LSTM Attention, Convolutional Recurrent Neural Network, Multi-Head Attention, Bidirectional Temporal Convolution Network, and Convolution Neural Network, and the optimal configuration was found for motor sound classification.

Vowel Classification of Imagined Speech in an Electroencephalogram using the Deep Belief Network (Deep Belief Network를 이용한 뇌파의 음성 상상 모음 분류)

  • Lee, Tae-Ju;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.59-64
    • /
    • 2015
  • In this paper, we found the usefulness of the deep belief network (DBN) in the fields of brain-computer interface (BCI), especially in relation to imagined speech. In recent years, the growth of interest in the BCI field has led to the development of a number of useful applications, such as robot control, game interfaces, exoskeleton limbs, and so on. However, while imagined speech, which could be used for communication or military purpose devices, is one of the most exciting BCI applications, there are some problems in implementing the system. In the previous paper, we already handled some of the issues of imagined speech when using the International Phonetic Alphabet (IPA), although it required complementation for multi class classification problems. In view of this point, this paper could provide a suitable solution for vowel classification for imagined speech. We used the DBN algorithm, which is known as a deep learning algorithm for multi-class vowel classification, and selected four vowel pronunciations:, /a/, /i/, /o/, /u/ from IPA. For the experiment, we obtained the required 32 channel raw electroencephalogram (EEG) data from three male subjects, and electrodes were placed on the scalp of the frontal lobe and both temporal lobes which are related to thinking and verbal function. Eigenvalues of the covariance matrix of the EEG data were used as the feature vector of each vowel. In the analysis, we provided the classification results of the back propagation artificial neural network (BP-ANN) for making a comparison with DBN. As a result, the classification results from the BP-ANN were 52.04%, and the DBN was 87.96%. This means the DBN showed 35.92% better classification results in multi class imagined speech classification. In addition, the DBN spent much less time in whole computation time. In conclusion, the DBN algorithm is efficient in BCI system implementation.

Multi-temporal Remote-Sensing Imag e ClassificationUsing Artificial Neural Networks (인공신경망 이론을 이용한 위성영상의 카테고리분류)

  • Kang, Moon-Seong;Park, Seung-Woo;Lim, Jae-Chon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.59-64
    • /
    • 2001
  • The objectives of the thesis are to propose a pattern classification method for remote sensing data using artificial neural network. First, we apply the error back propagation algorithm to classify the remote sensing data. In this case, the classification performance depends on a training data set. Using the training data set and the error back propagation algorithm, a layered neural network is trained such that the training pattern are classified with a specified accuracy. After training the neural network, some pixels are deleted from the original training data set if they are incorrectly classified and a new training data set is built up. Once training is complete, a testing data set is classified by using the trained neural network. The classification results of Landsat TM data show that this approach produces excellent results which are more realistic and noiseless compared with a conventional Bayesian method.

  • PDF

A Convolutional Neural Network Model with Weighted Combination of Multi-scale Spatial Features for Crop Classification (작물 분류를 위한 다중 규모 공간특징의 가중 결합 기반 합성곱 신경망 모델)

  • Park, Min-Gyu;Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1273-1283
    • /
    • 2019
  • This paper proposes an advanced crop classification model that combines a procedure for weighted combination of spatial features extracted from multi-scale input images with a conventional convolutional neural network (CNN) structure. The proposed model first extracts spatial features from patches with different sizes in convolution layers, and then assigns different weights to the extracted spatial features by considering feature-specific importance using squeeze-and-excitation block sets. The novelty of the model lies in its ability to extract spatial features useful for classification and account for their relative importance. A case study of crop classification with multi-temporal Landsat-8 OLI images in Illinois, USA was carried out to evaluate the classification performance of the proposed model. The impact of patch sizes on crop classification was first assessed in a single-patch model to find useful patch sizes. The classification performance of the proposed model was then compared with those of conventional two CNN models including the single-patch model and a multi-patch model without considering feature-specific weights. From the results of comparison experiments, the proposed model could alleviate misclassification patterns by considering the spatial characteristics of different crops in the study area, achieving the best classification accuracy compared to the other models. Based on the case study results, the proposed model, which can account for the relative importance of spatial features, would be effectively applied to classification of objects with different spatial characteristics, as well as crops.

A Multi-category Task for Bitrate Interval Prediction with the Target Perceptual Quality

  • Yang, Zhenwei;Shen, Liquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4476-4491
    • /
    • 2021
  • Video service providers tend to face user network problems in the process of transmitting video streams. They strive to provide user with superior video quality in a limited bitrate environment. It is necessary to accurately determine the target bitrate range of the video under different quality requirements. Recently, several schemes have been proposed to meet this requirement. However, they do not take the impact of visual influence into account. In this paper, we propose a new multi-category model to accurately predict the target bitrate range with target visual quality by machine learning. Firstly, a dataset is constructed to generate multi-category models by machine learning. The quality score ladders and the corresponding bitrate-interval categories are defined in the dataset. Secondly, several types of spatial-temporal features related to VMAF evaluation metrics and visual factors are extracted and processed statistically for classification. Finally, bitrate prediction models trained on the dataset by RandomForest classifier can be used to accurately predict the target bitrate of the input videos with target video quality. The classification prediction accuracy of the model reaches 0.705 and the encoded video which is compressed by the bitrate predicted by the model can achieve the target perceptual quality.

Land-cover classification using multi-temporal Radarsat-1 and ENVISAT data (다중 시기 Radarsat-1 자료와 ENVISAT 자료를 이용한 토지 피복 분류)

  • Park No-Wook;Chi Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.303-306
    • /
    • 2006
  • 이 연구에서는 C 밴드 SAR 자료이면서 서로 다른 편광 상태의 자료를 제공할 수 있는 다중 시기 Radarsat-1 자료와 ENVISAT ASAR 자료를 이용한 토지 피복 분류를 수행하였다. 다중 시기/편광 자료로부터 평균 후방산란계수, 시간적 변이도, 긴밀도 등의 특징을 기본적으로 추출하였고, 이외에 상호 비교를 위해 주성분 분석을 이용한 특징 추출을 시도하였다. 특징들을 이용한 분류기법으로는 Random Forests를 적용하였다. 충남 예당평야 일대를 대상으로 사례연구를 수행한 결과, 주성분 분석을 통한 특징과 다편광 자료를 이용하였을 때 분류 정확도가 향상되는 것으로 나타났다.

  • PDF