• Title/Summary/Keyword: Multi-story building

Search Result 170, Processing Time 0.026 seconds

Comparison between the Egyptian and international codes based on seismic response of mid- to high-rise moment resisting framed buildings

  • Ahmed Ibrahim;Ibrahim El-Araby;Ahmed I. Saleh;Mohammed Shaaban
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.347-361
    • /
    • 2023
  • This research aims to assess the behavior of reinforced concrete (RC) residential buildings when moment-resisting frames (MRFs) are used as the lateral resisting system. This investigation was conducted using MIDAS Gen v.19.0. Buildings with various plan footprints (Square, Rectangular, Circular, Triangular, and Plus-Shaped), and different heights (15 m, 30 m, 45 m, and 60 m) are investigated. The defined load cases, the equivalent static lateral load pattern, and the response spectrum function were defined as stated by the American Standard (ASCE 7-16), the 1997 Uniform Building Code (UBC97), the Egyptian Code for Loads (ECP-201), and the European Standard (EC8). Extensive comparisons of the results obtained by the different codes (including the story displacement, the story drift, and the base shear) were undertaken; to assess the response of moment-resisting multi-story framed buildings under lateral loads. The results revealed that, for all study cases under consideration, both ECP-201 and EC8 gave smaller base shear, displacement, and drift by one third to one fourth, around one fourth, around one fifth, respectively for both the ELF and RSA methods if compared to ASCE 7-16 and UBC97.

The Impact of Double-Skin Façades on Indoor Airflow in Naturally Ventilated Tall Office Buildings

  • Yohan, Kim;Mahjoub M. Elnimeiri;Raymond J. Clark
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.129-136
    • /
    • 2023
  • Natural ventilation has proven to be an effective passive strategy in improving energy efficiency and providing healthy environments. However, such a strategy has not been commonly adopted to tall office buildings that traditionally rely on single-skin façades (SSFs), due to the high wind pressure that creates excessive air velocities and occupant discomfort at upper floors. Double-skin façades (DSFs) can provide an opportunity to facilitate natural ventilation in tall office buildings, as the fundamental components such as the additional skin and openings create a buffer to regulate the direct impact of wind pressure and the airflow around the buildings. This study investigates the impact of modified multi-story type DSFs on indoor airflow in a 60-story, 780-foot (238 m) naturally ventilated tall office building under isothermal conditions. Thus, the performance of wind effect related components was assessed based on the criteria (e.g., air velocity and airflow distribution), particularly with respect to opening size. Computational fluid dynamics (CFD) was utilized to simulate outdoor airflow around the tall office building, and indoor airflow at multiple heights in case of various DSF opening configurations. The simulation results indicate that the outer skin opening is the more influential parameter than the inner skin opening on the indoor airflow behavior. On the other hand, the variations of inner skin opening size help improve the indoor airflow with respect to the desired air velocity and airflow distribution. Despite some vortexes observed in the indoor spaces, cross ventilation can occur as positive pressure on the windward side and negative pressure on the other sides generate productive pressure differential. The results also demonstrate that DSFs with smaller openings suitably reduce not only the impact of wind pressure, but also the concentration of high air velocity near the windows on the windward side, compared to SSFs. Further insight on indoor airflow behaviors depending on DSF opening configurations leads to a better understanding of the DSF design strategies for effective natural ventilation in tall office buildings.

TMD-Based Adaptive Smart Structural Control System for Multi-Hazard (TMD 기반 적응형 스마트 구조제어시스템의 멀티해저드 적응성 평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.720-725
    • /
    • 2017
  • This paper evaluated the safety and serviceability of a building structure considering the multi-hazard and proposed TMD-based adaptive smart control system to improve the structural performance. To make multi-hazard loads, an artificial earthquake and artificial wind loads were generated based on representative regions of strong seismicity and strong wind in U.S.A. The safety and serviceability of a 20-story example building structure were investigated using the generated artificial loads. A smart TMD was employed to improve the safety and serviceability of the example structure and its capacity of structural performance improvement was evaluated. The smart TMD was comprised of a MR (magnetorheological) damper. Numerical analysis showed that the example building structure could not satisfy the design limit of safety and serviceability with respect to multi-hazard. The smart TMD effectively reduced the seismic responses associated with the safety and wind-induce responses associated with serviceability.

Fuzzy Control of Smart TMD using Multi-Objective Genetic Algorithm (다목적 유전자알고리즘을 이용한 스마트 TMD의 퍼지제어)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.69-78
    • /
    • 2011
  • In this study, an optimization method using multi-objective genetic algorithm(MOGA) has been proposed to develop a fuzzy control algorithm that can effectively control a smart tuned mass damper(TMD). A 76-story benchmark building subjected to wind load was selected as an example structure. The smart TMD consists of 100kN MR damper and the natural period of the smart TMD was tuned to the first mode natural period of the example structure. Damping force of MR damper is controlled to reduce the wind-induced responses of the example structure by a fuzzy logic controller. Two input variables of the fuzzy logic controller are the acceleration of 75th floor and the displacement of the smart TMD and the output variable is the command voltage sent to MR damper. Multi-objective genetic algorithm(NSGA-II) was used for optimization of the fuzzy logic controller and the acceleration of 75th story and the displacement of the smart TMD were used as objective function. After optimization, a series of fuzzy logic controllers which could appropriately reduce both wind responses of the building and smart TMD were obtained. Based on numerical results, it has been shown that the control performance of the smart TMD is much better than that of the passive TMD and it is even better than that of the sample active TMD in some cases.

Two-level control system of toggle braces having pipe damper and rotational friction damper

  • Ata Abdollahpour;Seyed Mehdi Zahrai
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.739-750
    • /
    • 2023
  • This study examines the two-level behavior of the toggle brace damper within a steel frame having a yielding pipe damper and rotational friction damper. The proposed system has two kinds of fuse for energy dissipation in two stages. In this mechanism, rotational friction damper rather than hinged connection is used in toggle brace system, connected to a pipe damper with a limited gap. In order to create a gap, bolted connection with the slotted hole is used, such that first a specific movement of the rotational friction damper solely is engaged but with an increase in movement, the yielding damper is also involved. The performance of the system is such that at the beginning of loading the rotational friction damper, as the first fuse, absorbs energy and with increasing the input load and further movement of the frame, yielding damper as the second fuse, along with rotational friction damper would dissipate the input energy. The models created by ABAQUS are subjected to cyclic and seismic loading. Considering the results obtained, the flexibility of the hybrid two-level system is more comparable to the conventional toggle brace damper. Moreover, this system sustains longer lateral displacements. The energy dissipation of these two systems is modeled in multi-story frames in SAP2000 software and their performance is analyzed using time-history analysis. According to the results, permanent relocations of the roof in the two-level system, in comparison with toggle brace damper system in 2, 5, and 8-story building frames, in average, decrease by 15, 55, and 37% respectively. This amount in a 5-story building frame under the earthquakes with one-third scale decreases by 64%.

Development of Multi-Input Multi-Output Control Algorithm for Adaptive Smart Shared TMD (적응형 스마트 공유 TMD의 MIMO 제어알고리즘개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2015
  • A shared tuned mass damper (STMD) was proposed in previous research for reduction of dynamic responses of the adjacent buildings subjected to earthquake loads. A single STMD can provide similar control performance in comparison with two traditional TMDs. In previous research, a passive damper was used to connect the STMD with adjacent buildings. In this study, a smart magnetorheological (MR) damper was used instead of a passive damper to compose an adaptive smart STMD (ASTMD). Control performance of the ASTMD was investigated by numerical analyses. For this purpose, two 8-story buildings were used as example structures. Multi-input multi-output (MIMO) fuzzy logic controller (FLC) was used to control the command voltages sent to two MR dampers. The MIMO FLC was optimized by a multi-objective genetic algorithm. Numerical analyses showed that the ASTMD can effectively control dynamic responses of adjacent buildings subjected to earthquake excitations in comparison with a passive STMD.

Effect of Mid-span Gusset Plates on the Behavior of Multi-Story X-Braced Frames (중앙부 거셋플레이트의 다층 X-형 가새골조 거동에 미치는 영향)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.179-186
    • /
    • 2013
  • Steel braced frames are commonly used because braced frames are one of the most economical and efficient seismic resisting systems. However, research into the behavior of multi-story X-braced frame systems with mid-span gusset plates, as used in practice, is limited. As a result, their seismic performance and the influence of connection design on this performance are not well understood. Detailed nonlinear computer analyses of the frame were performed prior to building the test specimens and were used to aid the design and to predict the system performance. These analyses suggested significantly different behavior for the midspan gusset plate than that noted for the corner gusset plate connections. This paper summarizes the results of a full scale, 2-story braced frame analysis and test on concentrically braced frames.

Structural Performance of Beam-to-Column Joint Types in Dapo-style Buildings of the Joseon Dynasty (조선시대 다포계 건축물의 결구형태별 구조성능 평가)

  • Yoon, Jeong-Hoon;Choi, Yun-Chul;Lee, Eun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.8-14
    • /
    • 2019
  • In Korean traditional wooden architecture, joint performance varies with the material characteristics of timber, the form of joint, the precision of timber-trimming and the like. Case studies prove that the beam-to-column joint type has large influence on the degrees of deformation and spacing. This is not only true of single-story buildings, but also of large-scale multi-story buildings more apparently. Therefore, this study followed the process of examining to joint types, producing their specimens and testing their structural performance. As a consequence of structural test, the dovetail joint specimen showed the best outcomes of the maximum load and rigidity. Synthesizing the structural performances by respective forms of joints, the Doraegeoji dovetail joint specimen showed the higher performance, followed in order by the Doraegeoji mortise joint specimen and the Tongneoko dovetail joint specimen. The structural performance of a building varies with the characteristics by the shouldering forms of penetrating beams and with the joint types within the columns. This should be considered for the new construction or restoration of multi-story buildings, and be continuously researched henceforth.

Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes

  • Ozbulut, Osman E.;Silwal, Baikuntha
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.709-724
    • /
    • 2016
  • This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm to improve the performance of isolated buildings against near-fault earthquakes. The S-FBI system consists of a flat steel-PTFE sliding bearing and superelastic NiTi shape memory alloy (SMA) cables. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA cables provide restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm in order to optimize S-FBI system. Nonlinear time history analyses of the building with optimal S-FBI system are performed. A set of 20 near-fault ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

Modeling of RC Frame Buildings for Progressive Collapse Analysis

  • Petrone, Floriana;Shan, Li;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • The progressive collapse analysis of reinforced concrete (RC) moment-frame buildings under extreme loads is discussed from the perspective of modeling issues. A threat-independent approach or the alternate path method forms the basis of the simulations wherein the extreme event is modeled via column removal scenarios. Using a prototype RC frame building, issues and considerations in constitutive modeling of materials, options in modeling the structural elements and specification of gravity loads are discussed with the goal of achieving consistent models that can be used in collapse scenarios involving successive loss of load-bearing columns at the lowest level of the building. The role of the floor slabs in mobilizing catenary action and influencing the progressive collapse response is also highlighted. Finally, an energy-based approach for identifying the proximity to collapse of regular multi-story buildings is proposed.