• Title/Summary/Keyword: Multi-step method

Search Result 644, Processing Time 0.025 seconds

Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium

  • Heydari, Abbas;Shariati, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.737-748
    • /
    • 2018
  • The current study presents a new technique in the framework of the nonlocal elasticity theory for a comprehensive buckling analysis of Euler-Bernoulli nano-beams made up of bidirectional functionally graded material (BDFGM). The mechanical properties are considered by exponential and arbitrary variations for axial and transverse directions, respectively. The various circumstances including tapering, resting on two-parameter elastic foundation, step-wise or continuous variations of axial loading, various shapes of sections with various distribution laws of mechanical properties and various boundary conditions like the multi-span beams are taken into account. As far as we know, for the first time in the current work, the buckling analyses of BDFGM nano-beams are carried out under mentioned circumstances. The critical buckling loads and mode shapes are calculated by using energy method and a new technique based on calculus of variations and collocation method. Fast convergence and excellent agreement with the known data in literature, wherever possible, presents the efficiency of proposed technique. The effects of boundary conditions, material and taper constants, foundation moduli, variable axial compression and small-scale of nano-beam on the buckling loads and mode shapes are investigated. Moreover the analytical solutions, for the simpler cases are provided in appendices.

Nano-continuum multi scale analysis using node deactivation techniques (절점 비활성화 기법을 적용한 나노-연속체 멀티스케일 해석 기법)

  • Rhee Seung-Yun;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.395-402
    • /
    • 2006
  • In analyzing the nano-scale phenomena or behaviors of nano devices or materials, it is often desirable to deal with more atoms than can be treated only with a full atomistic simulation. However, even now, it is advisable to apply the atomistic simulation to the narrow region where the deformation field changes rapidly but to apply the conventional continuum model to the region far from that region. This equivalent continuum model can be formulated by applying the Cauchy-Born rule to the exact atomistic potential as in the quasicontinuum method. To couple the atomistic model with the equivalent continuum model, continuum displacements are conformed to the molecular displacements at the discrete positions of the atoms within the bridging domain. To satisfy the coupling constraints, we apply the Lagrange multiplier method. The continuum model in the bridging model should be applied on the region where the deformation field changes gradually. Then we can make the nodal spacing in the continuum model be much larger than the atomic spacing. In the first step, we generate the atomic-resolution mesh with the nodal spacing equal to the atomic spacing, and then we eliminate the nodal degrees of freedom adaptively using the node deactivation techniques. We eliminate more DOFs as the regions are more far from the atomistic region. Computing time and computational resources can be greatly reduced by the present node deactivation technique in multi scale analysis.

  • PDF

A Research on the viscous flow and the hydrodynamic force due to the small-amplitude in-phase oscillation of multi-cylinders (복합 원형 실린더군의 저진폭 동위상 진동에 의한 점성유동 및 동유체력에 관한 연구)

  • Sung-Kyun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.22-28
    • /
    • 1999
  • Small amplitude in-phase oscillations of multi-cylinders are considered both numerically and experimentally. Flow field is separated into inner and outer regions. The basic unsteady solution is obtained analytically and the secondary flow, termed as steady streaming flow, can be obtained numerically by using Finite Volume Code with Panel Method. The Particle Induced Velocimetry, one of whole field measurements, is introduced for comparison with numerical flow visualization quantitatively. Among the algorithms for PIV, the Three Step Vector Searching Technique is applied to reduce CPU time. Small but non-zero damping coefficient, that is important in lightly damped system can be obtained with varying number of bodies and distances.

  • PDF

Parallel Cell-Connectivity Information Extraction Algorithm for Ray-casting on Unstructured Grid Data (비정렬 격자에 대한 광선 투사를 위한 셀 사이 연결정보 추출 병렬처리 알고리즘)

  • Lee, Jihun;Kim, Duksu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • We present a novel multi-core CPU based parallel algorithm for the cell-connectivity information extraction algorithm, which is one of the preprocessing steps for volume rendering of unstructured grid data. We first check the synchronization issues when parallelizing the prior serial algorithm naively. Then, we propose a 3-step parallel algorithm that achieves high parallelization efficiency by removing synchronization in each step. Also, our 3-step algorithm improves the cache utilization efficiency by increasing the spatial locality for the duplicated triangle test process, which is the core operation of building cell-connectivity information. We further improve the efficiency of our parallel algorithm by employing a memory pool for each thread. To check the benefit of our approach, we implemented our method on a system consisting of two octa-core CPUs and measured the performance. As a result, our method shows continuous performance improvement as we add threads. Also, it achieves up to 82.9 times higher performance compared with the prior serial algorithm when we use thirty-two threads (sixteen physical cores). These results demonstrate the high parallelization efficiency and high cache utilization efficiency of our method. Also, it validates the suitability of our algorithm for large-scale unstructured data.

Pansharpening Method for KOMPSAT-2/3 High-Spatial Resolution Satellite Image (아리랑 2/3호 고해상도 위성영상에 적합한 융합기법)

  • Oh, Kwan-Young;Jung, Hyung-Sup;Jeong, Nam-Ki
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.161-170
    • /
    • 2015
  • This paper presents an efficient image fusion method to be appropriate for the KOMPSAT-2 and 3 satellites. The proposed method is based on the well-established component substitution (CS) approach. The proposed method is divided into two parts: 1) The first step is to create a intensity image by the weighted-averaging operation of a multi-spectral (MS) image and 2) the second step is to produce an optimal high-frequency image using the statistical properties of the original MS and panchromatic (PAN) images. The performance of the proposed method is evaluated in both quantitative and visual analysis. Quantitative assessments are performed by using the relative global dimensional synthesis error (Spatial and Spectral ERGAS), the image quality index (Q4), and the spectral angle mapper index (SAM). The qualitative and quantitative assessment results show that the fusion performance of the proposed method is improved in both the spectral and spatial qualities when it is compared with previous CS-based fusion methods.

Dynamic Gesture Recognition for the Remote Camera Robot Control (원격 카메라 로봇 제어를 위한 동적 제스처 인식)

  • Lee Ju-Won;Lee Byung-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1480-1487
    • /
    • 2004
  • This study is proposed the novel gesture recognition method for the remote camera robot control. To recognize the dynamics gesture, the preprocessing step is the image segmentation. The conventional methods for the effectively object segmentation has need a lot of the cole. information about the object(hand) image. And these methods in the recognition step have need a lot of the features with the each object. To improve the problems of the conventional methods, this study proposed the novel method to recognize the dynamic hand gesture such as the MMS(Max-Min Search) method to segment the object image, MSM(Mean Space Mapping) method and COG(Conte. Of Gravity) method to extract the features of image, and the structure of recognition MLPNN(Multi Layer Perceptron Neural Network) to recognize the dynamic gestures. In the results of experiment, the recognition rate of the proposed method appeared more than 90[%], and this result is shown that is available by HCI(Human Computer Interface) device for .emote robot control.

Preprocessing Algorithm of Cell Image Based on Inter-Channel Correlation for Automated Cell Segmentation (자동 세포 분할을 위한 채널 간 상관성 기반 세포 영상의 전처리 알고리즘)

  • Song, In-Hwan;Han, Chan-Hee;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.84-92
    • /
    • 2011
  • The automated segmentation technique of cell region in Bio Images helps biologists understand complex functions of cells. It is mightly important in that it can process the analysis of cells automatically which has been done manually before. The conventional methods for segmentation of cell and nuclei from multi-channel images consist of two steps. In the first step nuclei are extracted from DNA channel, and used as initial contour for the second step. In the second step cytoplasm are segmented from Actin channel by using Active Contour model based on intensity. However, conventional studies have some limitation that they let the cell segmentation performance fall by not considering inhomogeneous intensity problem in cell images. Therefore, the paper consider correlation between DNA and Actin channel, and then proposes the preprocessing algorithm by which the brightness of cell inside in Actin channel can be compensated homogeneously by using DNA channel information. Experiment result show that the proposed preprocessing method improves the cell segmentation performance compared to the conventional method.

An enhancement of GloSea5 ensemble weather forecast based on ANFIS (ANFIS를 활용한 GloSea5 앙상블 기상전망기법 개선)

  • Moon, Geon-Ho;Kim, Seon-Ho;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.11
    • /
    • pp.1031-1041
    • /
    • 2018
  • ANFIS-based methodology for improving GloSea5 ensemble weather forecast is developed and evaluated in this study. The proposed method consists of two steps: pre & post processing. For ensemble prediction of GloSea5, weights are assigned to the ensemble members based on Optimal Weighting Method (OWM) in the pre-processing. Then, the bias of the results of pre-processed is corrected based on Model Output Statistics (MOS) method in the post-processing. The watershed of the Chungju multi-purpose dam in South Korea is selected as a study area. The results of evaluation indicated that the pre-processing step (CASE1), the post-processing step (CASE2), pre & post processing step (CASE3) results were significantly improved than the original GloSea5 bias correction (BC_GS5). Correction performance is better the order of CASE3, CASE1, CASE2. Also, the accuracy of pre-processing was improved during the season with high variability of precipitation. The post-processing step reduced the error that could not be smoothed by pre-processing step. It could be concluded that this methodology improved the ability of GloSea5 ensemble weather forecast by using ANFIS, especially, for the summer season with high variability of precipitation when applied both pre- and post-processing steps.

Registration Method between High Resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 정합 기법)

  • Jeon, Hyeongju;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.

Finite Difference Method on Consolidation under Time Dependent Loading (점증하중에 의한 압밀의 유한차분해석)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1895-1899
    • /
    • 2012
  • Formulation of finite difference method for analyzing consolidation were carried out. It can be seen that the differences in settlement with time obtained by FDM and Terzaghi method are diminished by fine discretization of time increment. Excess pore pressures predicted by the derived finite difference equation were same as those calculated by Olson's method. Predicted time-settlement behavior from the derived finite difference method were almost same as those calculated by Terzaghi's method and Olson's method. Analysis results obtained from the assumed multi-step time dependent loading are thought to be reasonable.