• Title/Summary/Keyword: Multi-stage operation

Search Result 174, Processing Time 0.027 seconds

Operation control method for multiple objectives on multiple stages automated machining /assembly systems (다단계 자동가공/조립제조시스템에서 다목표 작업제어 기법)

  • 최정상
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.95-103
    • /
    • 1998
  • This paper is concentraed on a study of operation for multiple objectives in a automated manufacturing system with multiple machining cells . Largest Sum Processing-time First(LSPF) was developed in order to minimize makespan, mean flowtime and maximize mean utilization and compare with Ho and Chang's algorithm(HC) and Hunsucker and Shah's algorithm(HS). The results show that LSPF provides better soutions than HC at 78.2% and than HS at 67.8% of total problems to frequency . LSPF reduces 5.8% of makespan by HC and 22.1% of the value by HS and curtails 15.8% , 7.5% of mean flowtime by receptive algorithms(HC, HS). And mean utilization is also higher about 5.5% than HC and HS.

  • PDF

Optimization of Initial Blank Shape of Multi-stage Deep Drawing for Improvement of Formability (타원형 다단 딥 드로잉 제품의 성형성 향상을 위한 초기 소재 형상 최적 설계)

  • Lee, Sa-Rang;Park, Sang-Min;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.696-701
    • /
    • 2016
  • Multi-stage deep drawing is a widely used industrial manufacturing process, and its applications are gradually expanding to both small products and large metallic products. The USB C-type socket used in smart phones, for example, is manufactured using oval multi-stage deep drawing. The socket is very small and slender and it requires precise manufacturing. The thickness distribution of the final product is guaranteed only if it is uniform throughout the overall process. Therefore, minimizing the height difference between long and short sidewalls after the first operation is important for this goal. An initial blank optimization was performed for an oval-type drawing process based on finite element simulations. The goal was to determine an initial blank geometry that can maintain uniform height and thickness after the first draw operation. The initial blank shape of the sheet metal was optimized, and the results show that it satisfied the conditions of minimal thickness reduction and even thickness distribution. The geometry from the optimized simulation was compared with experimental results, which showed good agreement.

Asynchronous Waste: An Alternative Performance Measure for Pull Production Control System

  • Kim, ll-hyung
    • Management Science and Financial Engineering
    • /
    • v.6 no.1
    • /
    • pp.37-63
    • /
    • 2000
  • An important objective of pull-based production control is to achieve synchronized and smooth production flow in a multi-stage system that is subject to uncertainty. To our knowledge, previous research has not generated a performance measure that captures this objective of pull-based probased production control system. This performance material with respect to the instant when the operation is required. We examine the issue of asynchronous waste in a two-stage kanban control system.

  • PDF

The Design of High Cain Channel Amplifier for Terrestial Repeater of Digital Satellite Broadcasting (디지털 위성방송 지상 리피터용 고 이득 채널 증폭기 설계)

  • 이강훈;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.485-491
    • /
    • 2003
  • In this paper, We designed the multi-stage amplifier having high gain/low noise characteristics for terrestial repeater of direct digital satellite broadcasting system. In the design the amplifier, we optimized the parameters to have the stable operation between gain, noise figure and stability. The first stage of amplifier can be specified low noise impedance matching, 2nd stage to 5th stage show constant gain and stable operation and final stage of amplifier shows high gain impedance matching. As a result of experiment at the frequency of digital satellite terrestial, show 68dB gain under 2,4dB noise figure and 63dB dynamic range in the 11.7GHz-12.7GHz frequency range, it is a good agreement of communication channel amplifier requirements for satellite terrestial repeater.

Experimental Study on Non-Axisymmetric Rectangular Cup using Multi-Stage Deep Drawing Process (직사각 컵 성형을 위한 다단 디프드로잉 공정의 실험적 연구)

  • Ku, T.W.;Park, J.W.;Heo, S.C.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.253-262
    • /
    • 2010
  • For multi-stage deep drawing process including ironing operation and biaxial forming in this study, tool developments are achieved, and the developed tool sets are applied to experimental investigations. In process and tool designs, a contact condition between intermediate blank and lower die is considered as the sequential one. In this study, the material used is cold-rolled thin sheet (SPCE) with the initial thickness of 0.4mm. From the experimental approaches, several failures such as tearing, localized thickening and thinning, are observed. To solve these failures, the contact surface on the lower die is modified. As the experimental results by applying the modified lower die, it is investigated that the failures are not occurred, and the excessive deformation behavior due to the thinning and thickening effects are decreased. Furthermore, the thickness distributions on the major axis and the minor axis of each intermediate blank are investigated to be already satisfied the target (ironing) thickness, respectively. By this systematic approach, it is confirmed that the experimental results show good agreements with the designed and required configuration of each deformed and final products.

THE CLAMP MODE FORWARD ZERO-VOLTAGE-SWITCHING MULTI-RESONANT-CONVERTER (CLAMP MODE에서 동작하는 ZVS-MRC FORWARD 콘버어터에 관한 연구)

  • Kim, Hee-Jun;Simun, Misri
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.210-213
    • /
    • 1991
  • The clamp mode Zero-Volatge-Switched Multi-Resonant-Converter(ZVS-MRC) is proposed. In the converter, the performance of the conventional ZVS-MRC is improved by clamping the drain-to-source voltage of the power switch using a soft switching nondissipative active clamp network. The analysis for each stage of the converter operation modes is presented and is verified by experiments.

  • PDF

Substation Loading Analysis including Multi-train Operations (열차운행상황을 고려한 고속전철 급전변전소 부하해석)

  • 이태형;박춘수;서승일
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.162-166
    • /
    • 2003
  • Computerized simulation is becoming an indispensable procedure in the stage of planning, design, and operation of railway systems. This paper presents result of simulation technique for describing electrical performance of the power supply system which comprises the substation, catenary, feeder, and rails where multiple trains are running.

  • PDF

Optimal Operation of Battery Energy Storage System for Customers using the MPDP (MPDP를 이용한 수용가측 전지전력저장시스템의 최적운전)

  • Hong, Jong-Seok;Kim, Jae-Chul;Choi, Joon-Ho;Jung, Yong-Chul;Kim, Tae-Su;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.315-317
    • /
    • 2001
  • This paper studies for the optimal operation of BESS. The goal must be optimized electricity charge of the customer sides owned time-of-use rates in this paper. Therefore, the least of cost is caused by BESS installation, Multi-Pass Dynamic Programming (MPDP) algorithm is applied to the customer for the optimal operation determination in this paper. It is to solve the optimal solution under the constraints. No matter how become one stage in general, problem is divided into several stage in series in this algorithm. Regardless of the decision step, MPDP is only accomplished based on the state of stage in the present. To investigate the efficiencies of the algorithm, it is applied the typical load curve to the cutomer owned Time-Of-Use(TOU). Result shows that the maximun economic benefits of the battery energy storage system can be achieved by the purposed algorithm.

  • PDF

Transient cooling operation of multistage thermoelectric cooler (TEC)

  • Park, Jiho;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.55-59
    • /
    • 2021
  • A thermoelectric cooler (TEC) is promising as an alternative refrigeration technology for the sake of its inherent advantages; no-moving parts and refrigerant-free in its operation. Due to the compactness, reliability and excellence in temperature stability, TECs have been widely used for small cooling devices. In recent years, thermoelectric devices have been attractive technologies that not only serve the needs of cooling and heating applications but also meet the demand for energy by recycling waste heat. In this research paper, multistage TEC is proposed as a concept of demonstrating the idea of transient cooling technology. The key idea of transient cooling is to harnesses the thermal mass installed at the interfacial level of the stages. By storing heat temporally at the thermal mass, the multistage TEC can readily reach lower temperatures than that by a steady-state operation. The multistage TEC consists of four different sizes of thermoelectric modules and they are operated with an optimized current. Once the cold-part of the uppermost stage is reached at the no-load temperature, the current is successively supplied to the lower stages with a certain time interval; 25, 50 and 75 seconds. The results show the temperatures that can be ultimately reached at the cold-side of the lowermost stage are 197, 182 and 237 K, respectively. It can be concluded that the timing or total amount of the current fed to each thermoelectric module is the key parameter to determine the no-load temperature.

A Study on the Multi-level Optimization Method for Heat Source System Design (다단계 최적화 수법을 이용한 열원 설비 설계법에 관한 연구)

  • Yu, Min-Gyung;Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.299-304
    • /
    • 2016
  • In recent years, heat source systems which have a principal effect on the performance of buildings are difficult to design optimally as a great number of design factors and constraints in large and complicated buildings need to be considered. On the other hand, it is necessary to design an optimum system combination and operation planning for energy efficiency considering Life Cycle Cost (LCC). This study suggests a multi-level and multi-objective optimization method to minimize both LCC and investment cost using a genetic algorithm targeting an office building which requires a large cooling load. The optimum method uses a two stage process to derive the system combination and the operation schedule by utilizing the input data of cooling and heating load profile and system performance characteristics calculated by dynamic energy simulation. The results were assessed by Pareto analysis and a number of Pareto optimal solutions were determined. Moreover, it was confirmed that the derived operation schedule was useful for operating the heat source systems efficiently against the building energy requirements. Consequently, the proposed optimization method is determined by a valid way if the design process is difficult to optimize.