• Title/Summary/Keyword: Multi-stage evaporation

Search Result 19, Processing Time 0.024 seconds

The Reduced Steam Consumptions in the Evaporation Process Using a Vapor Recompression (증기 재압축을 활용한 증발공정에서 스팀 절감에 대한 연구)

  • Noh, Sang Gyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.225-231
    • /
    • 2016
  • In this study, modeling and optimization study have been performed to obtain $1,524.58kg\;h^{-1}$ of a solidified NaCl by evaporating a 21.0 wt% of NaCl aqueous solution in order to reduce the steam consumption from $3,139kg\;h^{-1}$ to $496kg\;h^{-1}$ using a two-stage evaporation and a vapor recompression processes. Aspen Plus release 8.8 at AspenTech was utilized for the modeling of two stage evaporation process and PRO/II with PROVISION release 9.4 at Schneider Electric was also used for the simulation of two-stage vapor recompression process with an inter-cooler. For the simulation of the evaporation process containing NaCl aqueous solution, Aspen Plus release 8.8 at AspenTech Inc. was utilized and for the modeling of vapor recompression process PRO/II with PROVISION release at Schneider Electric Inc. For the vapor recompression process, single stage compression and two-stage compression system was compared.

A Study on the Thermal Pump of the Hot Water Boiler (온수 보일러용 열구동 펌프에 관한 연구)

  • Yeom, Han-Gil;Kim, Uk-Joong;Kim, Chang-Ju
    • 연구논문집
    • /
    • s.30
    • /
    • pp.15-23
    • /
    • 2000
  • In this study, develop the thermal pump using water evaporation and condensation. Vapor from heating room moves up to pumping room and press the water of pumping room. Consequently water is pumped out to water tank. Then hot vapor direct contact with cold water in condensing room after pumping process. At this time, pressure of condensing room is down to-5kPa and suck in water of tank. This pump executes self ping and good durability because of no mechanical moving parts. Thermal pump is pumped cyclic so that, this pump is not used single. Therefore thermal pump of hot water boiler used to multi-stage for stable pumping rate. As the result of performance test, the developed thermal pump proves pumping action of water evaporation/condensation. And total volume flow rate is 500liter during one hour. If three thermal pump is installed parallel, this pump can use to the hot water boiler in the 300,000kcal/h class.

  • PDF

Ratio Optimization Between Sizes of Components of Heat Recovery Steam Generator in Combined Cycle Gas Turbine Power Plants (복합사이클 발전플랜트 폐열회수 보일러의 구성요소 크기비의 최적화)

  • In, Jong-Soo;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.403-410
    • /
    • 2009
  • This paper proposes a new approach to find the optimum ratios between sizes of the heat exchangers of the heat recovery steam generator (HRSG) system with limited size to maximize the efficiency of the steam turbine (bottom) cycle of combined cycle power plants (CCPP), but without performing the bottom cycle analysis. This could be achieved by minimizing the unavailable exergy (the sum of the destroyed and the lost exergies) resulted from the heat transfer process of the HRSG system. The present approach is relatively simple and straightforward because the process of the trial-and-error method, typical in performing the bottom cycle analysis for the system optimization, could be avoided. To demonstrate the usefulness of the present method, a single-stage HRSG system was chosen and the optimum evaporation temperature was obtained corresponding to the condition of the maximum useful work. The results show that the optimum evaporation temperature based on the present exergy analysis appears similar to that based on the bottom cycle analysis. Also shown is the dependency of size (NTU) ratios between the heat exchangers on the inlet gas temperature, which is another important factor in determining the optimum condition once overall size of the heat recovery steam generator is given. The present approach turned out to be a useful tool for optimization of the singlestage HRSG systems and can easily be extended to multi-stage systems.

A study on the required energy of a thermal type desalination plant (증발식 해수담수화설비의 에너지 소모량에 관한 연구)

  • Song, Chi-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1094-1100
    • /
    • 2014
  • TEvaporator is key component in food, seawater distillation and waste water treatment system, which is basically to concentrate the raw liquid by evaporating the pure water under vacuum condition. The liquid concentration is performed through the membrane, electro-dialysis and evaporation. In this study, only the evaporating type was treated for evaluating the economic analysis with the various operating conditions. The results of this study showed that the performance of the OT-MSF desalination system is increased with decreasing the temperature difference between the neighboring evaporators, which means that the number of evaporators is increased, under the determined design conditions.

The Effect of Substrate Surface Roughness on In-Situ Intrinsic Stress Behavior in Cu Thin Films (기판 표면 조도에 따른 구리박막의 실시간 고유응력 거동)

  • Cho, Moohyun;Hwang, Seulgi;Ryu, Sang;Kim, Youngman
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.466-473
    • /
    • 2009
  • Our group previously observed the intrinsic stress evolution of Cu thin films during deposition by changing the deposition rate. Intrinsic stress of Cu thin films, which show Volmer-Weber growth, is reported to display three unique stress stages, initial compressive, broad tensile, and incremental compressive stress. The mechanisms of the initial compressive stress and incremental compressive stages remain subjects of debate, despite intensive research inquiries. The tensile stress stage may be related to volume contraction through grain growth and coalescence to reduce over-accumulate Cu adatoms on the film surface. The in-situ intrinsic stresses behavior in Cu thin films was investigated in the present study using a multi-beam curvature measurement system attached to a thermal evaporation device. The effect of substrate surface roughness was monitored by observed the in-situ intrinsic stress behavior in Cu thin films during deposition, using $100{\mu}m$ thick Si(111) wafer substrates with three different levels of surface roughness.

Design and Performance Evaluation of a Portable 3-Stage Electrical Low Pressure Impactor(P-ELI) for Measurements of Submicron Aerosol (미세입자 측정용 간이형 3단 전기적 저압 임펙터의 설계 및 성능평가)

  • Cho, Myung-Hoon;Ji, Jun-Ho;Park, Dong-Ho;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.826-833
    • /
    • 2004
  • Cascade impactors are widely used to collect size classified aerosol. A major disadvantage of this instrument is the required long sampling time. Electrical low pressure impactor has been developed to overcome this disadvantage and to achieve real-time measurements on the particle size distribution. The instrument consists primarily of a corona charger, low pressure cascade impactor and multi channel electrometer. We designed and evaluated the performance of a potable 3-stage low pressure impactor using an electrical method. For the calibration of the impactor, monodispersed particles were generated using evaporation-condensation method followed by electrostatic classification using a DMA(Differential Mobility Analyzer). The collection efficiency curves of the stages can be determined by analysing the fraction of particles collected by each stage.

Calculation of non-condensable gases released in a seawater evaporating process (해수 증발과정에서의 기체방출량 계산)

  • Jeong, Kwang-Woon;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.182-190
    • /
    • 2017
  • All liquids contain a small amount of gaseous components and the amount of gases dissolved in a liquid is in accordance with Henry's Law. In a multi-stage thermal-type seawater desalination plant, as the supplied seawater undergoes variations in temperature and pressure in each evaporator, the gases dissolved in the seawater are discharged from the liquid. The discharged gases are carbon dioxide, nitrogen, oxygen, and argon, and these emitted gases are non-condensable. From the viewpoint of convective heat transfer, the evaluation of non-condensable gas released during a vacuum evaporation process is a very important design factor because the non-condensable gases degrade the performance of the cooler. Furthermore, in a thermal-type seawater desalination plant, most evaporators operate under vacuum, which maintained through vacuum system such as a steam ejector or a vacuum pump. Therefore, for the proper design of a vacuum system, estimating the non-condensable gases released from seawater is highly crucial. In the study, non-condensable gases released in a thermal-type seawater desalination plant were calculated quantitatively. The calculation results showed that the NCG releasing rate decreased as the stage comes getting a downstream and it was proportional to the freshwater production rate.

Thermo-Hydrodynamic Behaviors of Open Channel Flow Inside A Multi-Stage Flash Evaporator (다단 후래시 증발장치내 개수로 유동의 열.수력학적 거동)

  • 설광원;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.702-715
    • /
    • 1990
  • This paper describes behaviors of two-phase open channel flow inside the flash chamber of a horizontal Multi-Stage-Flash evaporator numerically along with the experimental observations. Bubble trajectories and the velocity and temperature distributions of the liquid phase were predicted by using the particle-source-in-cell(PSI-Cell) method with the appropriate bubble motion/growth equations. Size and number of bubble nuclei embedded in the incoming liquid(brine) were taken into account as important parameters in addition to the conventional ones such as the velocity, degree of inlet superheat, inlet opening height, and the liquid level. Bubble motions, which are unsteady, appeared to be mostly determined by the buoyancy and the drag forces. The calculations, though a number of simplifying assumptions were made, reasonably simulated the hydrodynamic behaviors of the two-phase horizontal stream observed in the experiments. The simulated temperature distributions also agreed fairly well with the other's measurements. Non-equilibrium allownaces, evaluated from the simulated temperature distributions, were within the range of those obtained from the existing correlations, and reduced with the increases of the number and size of incoming bubble nuclei due to vigorous flashing.

Electrical and Optical Properties with the Thickness of Cu(lnGa)$Se_2$ Absorber Layer (Cu(InGa)$Se_2$ 광흡수막의 두께에 따른 태양전지의 전기광학 특성)

  • Kim, S.K.;Lee, J.C.;Kang, K.H.;Yoon, K.H.;Park, I.J.;Song, J.;Han, S.O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.108-111
    • /
    • 2002
  • CIGS film has been fabricated on soda-lime glass, which is coated with Mo film. by multi-source evaporation process. The films has been prepared with thickness of 1.0 ${\mu}m$, 1.75${\mu}m$, 2.0${\mu}m$, 2.3${\mu}m$, and 3.0${\mu}m$. X-ray diffraction analysis with film thickness shows that CIGS films exhibit a strong (112) preferred orientation. Furthermore. CIGS films exhibited distinctly decreasing the full width of half-maximum and (112) preferred peak with film thickness. Also, The film's microstructure, such as the preferred orientation, the full width at half-maximum(FWHM), and the interplanar spacing were examined by X-ray diffraction. The preparation condition and the characteristics of the unit layers were as followings ; Mo back contact DC sputter, CIGS absorber layer : three-stage coevaporation, CdS buffer layer : chemical bath deposition, ZnO window layer : RF sputtering, $MgF_2$ antireflectance : E-gun evaporation

  • PDF

A Mechanistic Model for Forced Convective Transition Boiling of Subcooled Water in Vertical Tubes (수직관내 미포화수의 강제대류 천이비등에 대한 역학적 모델)

  • Lee, Kwang-Won;Baik, Se-Jun;Han, Sang-Good;Joo, Kyung-Oin;Yang, Jae-Young
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.503-517
    • /
    • 1995
  • A mechanistic model for forced convective transition boiling has been developed to predict transition boiling heat flux realistically. This model is based on a postulated multi­stage boiling process occurring during the passage time of an elongated vapor blanket specified at a critical heat flux condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling. The total heat transfer rate during the transition boiling is the sum of the heat transfer rates after the DNB weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. From these comparisons, it can be seen that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are nil predicted at low qualities/high pressures near 10 bar.

  • PDF