• 제목/요약/키워드: Multi-stage Adaboost

검색결과 4건 처리시간 0.021초

옥외영상의 개선된 차량번호판 인식기술 (An Improved License Plate Recognition Technique in Outdoor Image)

  • 김병준;김동훈;이준환
    • 한국지능시스템학회논문지
    • /
    • 제26권5호
    • /
    • pp.423-431
    • /
    • 2016
  • 일반적으로 옥외영상에서의 자동차 번호판 인식은 인위적인 환경에서와는 다르게 기하학적으로 왜곡되어 있을 뿐만 아니라 조명 변화도 크기 때문에 단순환 문제가 아니다. 본 논문에서는 일반 CCTV 카메라로 옥외에서 촬영된 영상에서 자동차 번호판 인식을 위한 개선된 기술들을 제안한다. 먼저 다양한 특징을 상보적으로 사용하는 직렬구조의 다단계 Adaboost 검출기를 제안한다. 제안하는 검출기는 MB-LBP 및 Haar-like 특징을 사용하는 Adaboost 구조를 직렬로 연결하여 번호판 검출의 검출성능을 향상시켰다. 또한 검출된 번호판의 기하학적 왜곡을 보정하고 번호판의 타입을 먼저 결정하여 영상처리를 용이하게 하는 방법을 제안한다. 이런 방법은 그래이 변환, 문자/숫자 분리, 분리된 영상의 영상처리 등에서 사전지식 없이 전체 번호판 영상을 이용하는 경우보다 효율적이다. 본 논문에서 DBN(Deep Belief Network)를 문자/숫자 인식기로 사용하여 영상처리과정에서 기인한 획 손실이나 기울어짐 같은 기하학적인 왜곡에서도 강건한 인식률을 달성하였다.

탬플릿 매칭과 코검출 기반 얼굴 위장 탐지 시스템 (Face Disguise Detection System Based on Template Matching and Nose Detection)

  • 양재준;조성원;이기성
    • 한국지능시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.100-107
    • /
    • 2012
  • 최근 지능형 범죄가 늘면서 첨단 보안 기술에 대한 요구가 점차 늘어나고 있다. 현재까지 보고된 위장한 얼굴의 검출방법은 실용화를 위하여 정확도 개선이 요구된다. 본 논문에서는 사람의 얼굴에 대하여 템플릿 매칭을 통한 유사도와 아다부스트를 사용한 얼굴 위장판별 시스템을 제안한다. 제안된 시스템은 먼저 다중 스케일 가버특징 벡터를 기반으로 눈의 위치를 찾은 후 템플릿 매칭을 통해서 눈에 대한 유사도를 측정하여 선글라스 착용여부를 판단하고 아다부스트를 사용한 코의 검출을 통하여 마스크 착용 여부를 판단한다. 실험을 통하여 본 논문에서 제안한 방법이 더욱 신뢰성 높은 위장 판별 시스템임을 확인하였다.

얼굴 인식 기반 위변장 감지 시스템 (Fake Face Detection and Falsification Detection System Based on Face Recognition)

  • 김준영;조성원
    • 스마트미디어저널
    • /
    • 제4권4호
    • /
    • pp.9-17
    • /
    • 2015
  • 최근 지능형 범죄가 늘면서 첨단 보안 기술에 대한 요구가 점차 늘어나고 있다. 현재까지 보고된 위, 변장 영상 검출방법은 실용화를 위하여 정확도 개선이 요구된다. 본 논문에서는 사람의 얼굴에 대하여 동공의 반사도를 이용하여 위조 영상을 판별하고 아다부스트를 이용하여 만든 얼굴 부분별 검출기를 사용한 얼굴 변장 영상을 판별한다. 제안된 시스템은 다중 스케일 가버 특징 벡터를 기반으로 눈의 위치를 찾은 후 템플릿 매칭을 통해서 정확히 찾아진 눈 위치의 동공을 조사하여 최대값과 최소값을 구하여 위조 여부를 판별하고 부분별 검출기를 사용하여 눈과 코의 검출 여부를 판단하여 각각 선글라스와 마스크의 착용 여부를 판단하고 선글라스&마스크 검출기를 사용하여 얼굴이 검출되지 않았을 경우를 대비하였다. 실험을 통하여 본 논문에서 제안한 방법이 더욱 신뢰성 높은 위, 변장판별시스템임을 확인하였다.

Financial Distress Prediction Using Adaboost and Bagging in Pakistan Stock Exchange

  • TUNIO, Fayaz Hussain;DING, Yi;AGHA, Amad Nabi;AGHA, Kinza;PANHWAR, Hafeez Ur Rehman Zubair
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권1호
    • /
    • pp.665-673
    • /
    • 2021
  • Default has become an extreme concern in the current world due to the financial crisis. The previous prediction of companies' bankruptcy exhibits evidence of decision assistance for financial and regulatory bodies. Notwithstanding numerous advanced approaches, this area of study is not outmoded and requires additional research. The purpose of this research is to find the best classifier to detect a company's default risk and bankruptcy. This study used secondary data from the Pakistan Stock Exchange (PSX) and it is time-series data to examine the impact on the determinants. This research examined several different classifiers as per their competence to properly categorize default and non-default Pakistani companies listed on the PSX. Additionally, PSX has remained consistent for some years in terms of growth and has provided benefits to its stockholders. This paper utilizes machine learning techniques to predict financial distress in companies listed on the PSX. Our results indicate that most multi-stage mixture of classifiers provided noteworthy developments over the individual classifiers. This means that firms will have to work on the financial variables such as liquidity and profitability to not fall into the category of liquidation. Moreover, Adaptive Boosting (Adaboost) provides a significant boost in the performance of each classifier.