• 제목/요약/키워드: Multi-spectral images

검색결과 225건 처리시간 0.022초

Cloud Removal Using Gaussian Process Regression for Optical Image Reconstruction

  • Park, Soyeon;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제38권4호
    • /
    • pp.327-341
    • /
    • 2022
  • Cloud removal is often required to construct time-series sets of optical images for environmental monitoring. In regression-based cloud removal, the selection of an appropriate regression model and the impact analysis of the input images significantly affect the prediction performance. This study evaluates the potential of Gaussian process (GP) regression for cloud removal and also analyzes the effects of cloud-free optical images and spectral bands on prediction performance. Unlike other machine learning-based regression models, GP regression provides uncertainty information and automatically optimizes hyperparameters. An experiment using Sentinel-2 multi-spectral images was conducted for cloud removal in the two agricultural regions. The prediction performance of GP regression was compared with that of random forest (RF) regression. Various combinations of input images and multi-spectral bands were considered for quantitative evaluations. The experimental results showed that using multi-temporal images with multi-spectral bands as inputs achieved the best prediction accuracy. Highly correlated adjacent multi-spectral bands and temporally correlated multi-temporal images resulted in an improved prediction accuracy. The prediction performance of GP regression was significantly improved in predicting the near-infrared band compared to that of RF regression. Estimating the distribution function of input data in GP regression could reflect the variations in the considered spectral band with a broader range. In particular, GP regression was superior to RF regression for reproducing structural patterns at both sites in terms of structural similarity. In addition, uncertainty information provided by GP regression showed a reasonable similarity to prediction errors for some sub-areas, indicating that uncertainty estimates may be used to measure the prediction result quality. These findings suggest that GP regression could be beneficial for cloud removal and optical image reconstruction. In addition, the impact analysis results of the input images provide guidelines for selecting optimal images for regression-based cloud removal.

입력 영상의 방사학적 불일치 보정이 다중 센서 고해상도 위성영상의 시공간 융합에 미치는 영향 (Effect of Correcting Radiometric Inconsistency between Input Images on Spatio-temporal Fusion of Multi-sensor High-resolution Satellite Images)

  • 박소연;나상일;박노욱
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.999-1011
    • /
    • 2021
  • 다중 센서 영상으로부터 공간 및 시간해상도가 모두 높은 영상을 예측하는 시공간 융합에서 다중 센서 영상의 방사학적 불일치는 예측 성능에 영향을 미칠 수 있다. 이 연구에서는 다중 센서 위성영상의 서로 다른 분광학적 특성을 보정하는 방사보정이 융합 결과에 미치는 영향을 분석하였다. 두 농경지에서 얻어진 Sentinel-2, PlanetScope 및 RapidEye 영상을 이용한 사례연구를 통해 상대 방사보정의 효과를 정량적으로 분석하였다. 사례연구 결과, 상대 방사보정을 적용한 다중 센서 영상을 사용하였을 때 융합의 예측 정확도가 향상되었다. 특히 입력 자료 간 상관성이 낮은 경우에 상대 방사보정에 의한 예측 정확도 향상이 두드러졌다. 분광 특성의 차이를 보이는 다중 센서 자료를 서로 유사하게 변환함으로써 예측 성능이 향상된 것으로 보인다. 이 결과를 통해 상대 방사보정은 상관성이 낮은 다중 센서 위성영상의 시공간 융합에서 예측 능력을 향상시키기 위해 필요할 것으로 판단된다.

영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험 (Spatio-spectral Fusion of Multi-sensor Satellite Images Based on Area-to-point Regression Kriging: An Experiment on the Generation of High Spatial Resolution Red-edge and Short-wave Infrared Bands)

  • 박소연;강솔아;박노욱
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.523-533
    • /
    • 2022
  • 이 논문에서는 상호보완적인 공간 및 분광해상도를 가진 다중센서 위성영상을 이용하여 공간해상도와 분광해상도를 향상시키기 위해 영역-점 회귀 크리깅(area-to-point regression kriging, ATPRK) 기반의 2단계 spatio-spectral fusion method (2SSFM)을 제안하였다. 2SSFM은 ATPRK와 random forest 회귀 모형을 결합하여 다중센서 위성영상에서 높은 공간해상도를 갖는 분광 밴드를 예측한다. 첫 번째 단계에서는 다중센서 위성영상 사이의 공간해상도 차이를 감소시키기 위해 ATPRK 기반 공간 상세화를 수행한다. 두 번째 단계에서는 다중센서 위성영상 사이의 분광 밴드의 관계성을 정량화하기 위해 random forest를 이용한 회귀 모델링을 적용하였다. 2SSFM의 예측 성능은 적색 경계와 단파 적외선 밴드를 생성하는 사례 연구를 통해 평가하였다. 사례 연구에서 2SSFM은 실제 분광 밴드와 유사한 분광패턴을 보이면서 공간해상도가 향상된 적색 경계와 단파 적외선 밴드를 생성할 수 있었으며, 2SSFM가 고해상도 위성영상에서 제공하지 않은 분광 밴드 생성에 유용함을 확인할 수 있었다. 따라서 2SSFM을 통해 실제로 획득 불가능하지만 환경 모니터링에 효과적인 분광 밴드를 예측함으로써 다양한 분광 지수를 생성할 수 있을 것으로 기대된다.

소형 다중분광 항공촬영 시스템(PKNU 3호) 개발에 관한 연구 (Research for development of small format multi -spectral aerial photographing systems (PKNU 3))

  • 이은경;최철웅;서영찬;조남춘
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.143-152
    • /
    • 2004
  • Researchers seeking geological and environmental information, depend on remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, adverse weather conditions as well as equipment expense limit the ability to collect data anywhere and anytime. To allow for better flexibility in geological and environmental data collection, we have developed a compact, multi-spectral automatic Aerial Photographic system (PKNU2). This system's Multi-spectral camera can record visible (RGB) and infrared (NIR) band (3032*2008 Pixels) images Visible and infrared band images were obtained from each camera respectively and produced color-infrared composite images to be analyzed for the purpose of the environmental monitoring. However this did not provide quality data. Furthermore, it has the disadvantage of having the stereoscopic overlap area being 60% unsatisfied due to the 12 seconds of storage time of each data The PKNU2 system in contrast, photographed photos of great capacity Thus, with such results, we have been proceeding to develop the advanced PKNU2 (PKNU3) system that consists of a color-infrared spectral camera that can photograph in the visible and near-infrared bands simultaneously using a single sensor, a thermal infrared camera, two 40G computers to store images, and an MPEG board that can compress and transfer data to the computer in real time as well as be able to be mounted onto a helicopter platform.

  • PDF

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • 대한원격탐사학회지
    • /
    • 제20권5호
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Multi- Resolution MSS Image Fusion

  • Ghassemian, Hassan;Amidian, Asghar
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.648-650
    • /
    • 2003
  • Efficient multi-resolution image fusion aims to take advantage of the high spectral resolution of Landsat TM images and high spatial resolution of SPOT panchromatic images simultaneously. This paper presents a multi-resolution data fusion scheme, based on multirate image representation. Motivated by analytical results obtained from high-resolution multispectral image data analysis: the energy packing the spectral features are distributed in the lower frequency bands, and the spatial features, edges, are distributed in the higher frequency bands. This allows to spatially enhancing the multispectral images, by adding the high-resolution spatial features to them, by a multirate filtering procedure. The proposed method is compared with some conventional methods. Results show it preserves more spectral features with less spatial distortion.

  • PDF

물체의 분광반사율 추정을 위한 최적필터의 선정 (Optimization of color filters selection to estimate surface spectral reflectance of Munsell colors)

  • 이승희;이을환;유미옥;노상철;안석출
    • 한국인쇄학회지
    • /
    • 제16권3호
    • /
    • pp.121-131
    • /
    • 1998
  • The object color does not look same under the different light source. It depends on the surface spectral reflectance and the spectral distribution of light source. Therefore we should find the surface spectral reflectance of object color and the spectral distribution of light source for color reproduction. Using Wiener estimation, we can estimate the spectral reflectance from low dimensional images obtained with multi-band image acquisition system. The kind and the number of imaging filters have the effect on the estimation of the spectral reflectance. Therefore it is important that optimal filters are selected to minimize the error of the result. In this paper, we describe methods to select optimal filters with minimum error between measured and estimated surface spectral reflectance and to estimate surface spectral reflectance of Munsell color chart from six multi-band images by using Wiener estimation.

  • PDF

3-D High Resolution Ultrasonic Transmission Tomography and Soft Tissue Differentiation

  • Kim Tae-Seong
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권1호
    • /
    • pp.55-63
    • /
    • 2005
  • A novel imaging system for High-resolution Ultrasonic Transmission Tomography (HUTT) and soft tissue differentiation methodology for the HUTT system are presented. The critical innovation of the HUTT system includes the use of sub-millimeter transducer elements for both transmitter and receiver arrays and multi-band analysis of the first-arrival pulse. The first-arrival pulse is detected and extracted from the received signal (i.e., snippet) at each azimuthal and angular location of a mechanical tomographic scanner in transmission mode. Each extracted snippet is processed to yield a multi-spectral vector of attenuation values at multiple frequency bands. These vectors form a 3-D sinogram representing a multi-spectral augmentation of the conventional 2-D sinogram. A filtered backprojection algorithm is used to reconstruct a stack of multi-spectral images for each 2-D tomographic slice that allow tissue characterization. A novel methodology for soft tissue differentiation using spectral target detection is presented. The representative 2-D and 3-D HUTT images formed at various frequency bands demonstrate the high-resolution capability of the system. It is shown that spherical objects with diameter down to 0.3㎜ can be detected. In addition, the results of soft tissue differentiation and characterization demonstrate the feasibility of quantitative soft tissue analysis for possible detection of lesions or cancerous tissue.

Development of PKNU3: A small-format, multi-spectral, aerial photographic system

  • Lee Eun-Khung;Choi Chul-Uong;Suh Yong-Cheol
    • 대한원격탐사학회지
    • /
    • 제20권5호
    • /
    • pp.337-351
    • /
    • 2004
  • Our laboratory originally developed the compact, multi-spectral, automatic aerial photographic system PKNU3 to allow greater flexibility in geological and environmental data collection. We are currently developing the PKNU3 system, which consists of a color-infrared spectral camera capable of simultaneous photography in the visible and near-infrared bands; a thermal infrared camera; two computers, each with an 80-gigabyte memory capacity for storing images; an MPEG board that can compress and transfer data to the computers in real-time; and the capability of using a helicopter platform. Before actual aerial photographic testing of the PKNU3, we experimented with each sensor. We analyzed the lens distortion, the sensitivity of the CCD in each band, and the thermal response of the thermal infrared sensor before the aerial photographing. As of September 2004, the PKNU3 development schedule has reached the second phase of testing. As the result of two aerial photographic tests, R, G, B and IR images were taken simultaneously; and images with an overlap rate of 70% using the automatic 1-s interval data recording time could be obtained by PKNU3. Further study is warranted to enhance the system with the addition of gyroscopic and IMU units. We evaluated the PKNU 3 system as a method of environmental remote sensing by comparing each chlorophyll image derived from PKNU 3 photographs. This appraisement was backed up with existing study that resulted in a modest improvement in the linear fit between the measures of chlorophyll and the RVI, NDVI and SAVI images stem from photographs taken by Duncantech MS 3100 which has same spectral configuration with MS 4000 used in PKNU3 system.

다중분광 및 다중시기 영상자료 통합을 통한 토지피복분류 갱신 (Updating Land Cover Classification Using Integration of Multi-Spectral and Temporal Remotely Sensed Data)

  • 장동호
    • 대한지리학회지
    • /
    • 제39권5호
    • /
    • pp.786-803
    • /
    • 2004
  • 최근, 다중 센서 영상과 GIS 주제도 정보를 이용한 토지 피복 분류에 대해 관심이 증가하고 있는 추세이다. 그러나. 분류에 필요한 효과적인 GIS 정보를 충분히 보유하고 있음에도 불구하고, 최대우도법(MLE) 같은 전통적인 방법은 기존의 컴퓨터 프로그램들이 GTS 자료를 제대로 다룰 수 없다는 이유로 유용한 정보의 이용에 제한을 받아 왔다. 본 연구에서는 다중 파장대 및 다중 시기 영상을 이용하여 새로운 영상 분류기법을 제안하고자 한다. 특히 MLE기법을 확대하여 다중 스펙트럼 영상 자료 및 토지 피복 분류 자료 등을 함께 사용할 수 있도록 하였다. 또한 파라미터가 데이터에서 추정되는 경우 우도비(LRE) 추정법이 오히려 더 적합할 수 있어서 LRE기법도 함께 사용하였다. 연구 지역은 서해안 안면도 지역이며, 자료는 Landsat ETM+ 영상과 Landsat TM 영상을 이용하여 만든 토지 피복도이다. 연구 결과. 제안된 방법은 단일 스펙트럼 자료를 사용하는 것보다 현저히 개선된 분류 정확도를 나타낸다. 즉, 개선된 분류 영상들은. MLE를 사용했을 때는 $6.2\%$, LRE를 사용했을 때는 $9.2\%$의 분류 정확도 개선을 보였다. 또한 본 연구는 제시된 알고리즘이 토지 피복 변화에 따른 그 지역의 변화 지역 추출도 가능할 것으로 판단된다. 향후 토지피복 분류 결과는 실 세계에서 보다 정확한 의사결정을 위한 보완적인 자료로써 유용하게 사용될 수 있을 것이라는 판단된다.