• 제목/요약/키워드: Multi-spectral Imaging

검색결과 72건 처리시간 0.027초

CAPABILITY OF THE FAST IMAGING SOLAR SPECTROGRAPH ON NST/BBSO FOR OBSERVING FILAMENTS/PROMINENCES AT THE SPECTRAL LINES Hα, Ca II 8542, AND Ca II K

  • Ahn, Kwang-Su;Chae, Jong-Chul;Park, Hyung-Min;Nah, Jak-Young;Park, Young-Deuk;Jang, Bi-Ho;Moon, Yong-Jae
    • 천문학회지
    • /
    • 제41권2호
    • /
    • pp.39-47
    • /
    • 2008
  • Spectral line profiles of filaments/prominences to be observed by the Fast Imaging Solar Spectrograph (FISS) are studied. The main spectral lines of interests are $H{\alpha}$, Ca II 8542, and Ca II K. FISS has a high spectral resolving power of $2{\times}10^5$, and supports simultaneous dual-band recording. This instrument will be installed at the 1.6m New Solar Telescope (NST) of Big Bear Solar Observatory, which has a high spatial resolution of 0.065" at 500nm. Adopting the cloud model of radiative transfer and using the model parameters inferred from pre-existing observations, we have simulated a set of spectral profiles of the lines that are emitted by a filament on the disk or a prominence at the limb. Taking into account the parameters of the instrument, we have estimated the photon count to be recorded by the CCD cameras, the signal-to-noise ratios, and so on. We have also found that FISS is suitable for the study of multi-velocity threads in filaments if the spectral profiles of Ca II lines are recorded together with $H{\alpha}$ lines.

MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가 (Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images)

  • 박종화;나상일
    • 한국환경복원기술학회지
    • /
    • 제9권6호
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.

Estimation of Fractional Vegetation Cover in Sand Dunes Using Multi-spectral Images from Fixed-wing UAV

  • Choi, Seok Keun;Lee, Soung Ki;Jung, Sung Heuk;Choi, Jae Wan;Choi, Do Yoen;Chun, Sook Jin
    • 한국측량학회지
    • /
    • 제34권4호
    • /
    • pp.431-441
    • /
    • 2016
  • Since the use of UAV (Unmanned Aerial Vehicle) is convenient for the acquisition of data on broad or inaccessible regions, it is nowadays used to establish spatial information for various fields, such as the environment, ecosystem, forest, or for military purposes. In this study, the process of estimating FVC (Fractional Vegetation Cover), based on multi-spectral UAV, to overcome the limitations of conventional methods is suggested. Hence, we propose that the FVC map is generated by using multi-spectral imaging. First, two types of result classifications were obtained based on RF (Random Forest) using RGB images and NDVI (Normalized Difference Vegetation Index) with RGB images. Then, the result map was reclassified into vegetation and non-vegetation. Finally, an FVC map-based RF were generated by using pixel calculation and FVC map-based GI (Gutman and Ignatov) model were indirectly made by fixed parameters. The method of adding NDVI shows a relatively higher accuracy compared to that of adding only RGB, and in particular, the GI model shows a lower RMSE (Root Mean Square Error) with 0.182 than RF. In this regard, the availability of the GI model which uses only the values of NDVI is higher than that of RF whose accuracy varies according to the results of classification. Our results showed that the GI mode ensures the quality of the FVC if the NDVI maintained at a uniform level. This can be easily achieved by using a UAV, which can provide vegetation data to improve the estimation of FVC.

Modis Maximum NDVI, Minimum Blue, and Average Cloud-free Monthly Composites of Southeast Asia

  • Zerbe, L.;Chia, A.S.;Liew, S.C.;Kwoh, L.K.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.172-174
    • /
    • 2003
  • Using MODIS data and several different compositing algorithms utilizing the average cloud free days in a compositing period, maximum ndvi, or dual maximum NDVI/minimum blue, multi resolution composites (250m, 500m, 1km) have been produced for Southeast Asia, with spectral bands ranging from the visible to short-wave infrared with a single band in the thermal (for land and sea surface temperature). A total of nine composites have been produced for the months of May and August in 2003, including blue, green, red, NIR, three in the SWIR, and several to specifically monitor vegetation health.

  • PDF

공간 영상 처리를 위한 SIFT 매칭 기법의 성능 분석 (A Performance Analysis of the SIFT Matching on Simulated Geospatial Image Differences)

  • 오재홍;이효성
    • 한국측량학회지
    • /
    • 제29권5호
    • /
    • pp.449-457
    • /
    • 2011
  • As automated image processing techniques have been required in multi-temporal/multi-sensor geospatial image applications, use of automated but highly invariant image matching technique has been a critical ingredient. Note that there is high possibility of geometric and spectral differences between multi-temporal/multi-sensor geospatial images due to differences in sensor, acquisition geometry, season, and weather, etc. Among many image matching techniques, the SIFT (Scale Invariant Feature Transform) is a popular method since it has been recognized to be very robust to diverse imaging conditions. Therefore, the SIFT has high potential for the geospatial image processing. This paper presents a performance test results of the SIFT on geospatial imagery by simulating various image differences such as shear, scale, rotation, intensity, noise, and spectral differences. Since a geospatial image application often requires a number of good matching points over the images, the number of matching points was analyzed with its matching positional accuracy. The test results show that the SIFT is highly invariant but could not overcome significant image differences. In addition, it guarantees no outlier-free matching such that it is highly recommended to use outlier removal techniques such as RANSAC (RANdom SAmple Consensus).

다중스펙트럼을 이용한 횡단보도 보행자 검지에 관한 연구 (A study on the detection of pedestrians in crosswalks using multi-spectrum)

  • 김정훈;최두현;이종선;이동화
    • 한국산업정보학회논문지
    • /
    • 제27권1호
    • /
    • pp.11-18
    • /
    • 2022
  • 주간 및 야간의 보행자 감지를 위해서는 다중 스펙트럼 활용이 필수적이다. 본 논문에서는 교통사고의 위험성이 높은 교차로에서 횡단보도 근처의 보행자를 24시간 검출하기 위해 컬러 카메라 및 열화상 적외선 카메라를 사용하였다. 보행자 탐지를 위해서 YOLO v5 객체 검출기를 사용하였으며 컬러 이미지와 열화상 이미지를 동시에 사용하여 감지 성능을 향상 시켰다. 제안된 시스템은 실제 횡단보도 현장에서 확보한 주·야간 다중 스펙트럼(색상 및 열화상) 보행자 데이터 셋에서 Iou 0.5 기준 0.94 mAP의 높은 성능을 보였다.

Analysis of the MSC(Multi-Spectral Camera) Operational Parameters

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun
    • 대한원격탐사학회지
    • /
    • 제18권1호
    • /
    • pp.53-59
    • /
    • 2002
  • The MSC is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a GSD(Ground Sample Distance) of 1 m over the entire FOV(Field Of View) at altitude 685 km. The instrument is designed to haute an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The MSC instrument has one channel for panchromatic imaging and four channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI(Time Belayed Integration) CCD(Charge Coupled Device) FPA(Focal Plane Assembly). The MSC hardware consists of three subsystem, EOS(Electro Optic camera Subsystem), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Subsystem) and each subsystems are currently under development and will be integrated and verified through functional and space environment tests. Final verified MSC will be delivered to spacecraft bus for AIT(Assembly, Integration and Test) and then COMSAT-2 satellite will be launched after verification process through IST(Integrated Satellite Test). In this paper, the introduction of MSC, the configuration of MSC electronics including electrical interlace and design of CEU(Camera Electronic Unit) in EOS are described. MSC Operation parameters induced from the operation concept are discussed and analyzed to find the influence of system for on-orbit operation in future.

On-field Crop Stress Detection System Using Multi-spectral Imaging Sensor

  • Kim, Yunseop;Reid, John F.;Hansen, Alan;Zhang, Qin
    • Agricultural and Biosystems Engineering
    • /
    • 제1권2호
    • /
    • pp.88-94
    • /
    • 2000
  • Nitrogen (N) management is critical for corn production. On the other hand, N leaching into the groundwater creates serious environmental problems. There is a demand for sensors that can assess the plant N deficiency throughout the growing season to allow producers to reach their production goals, while maintaining environmental quality. This paper reports on the performance of a vision-based reflectance sensor for real-time assessment of N stress level of corn crops. Data were collected representing the changes in crop reflectance in various spectral ranges over several stages of development in the growing season. The performance of this non-contact sensor was validated under various field conditions with reference measurement from a Minolta SPAD meter and stepped nitrogen treatments.

  • PDF

영역기반 가중치 맵을 이용한 멀티스팩트럼 플래시 영상 획득 (Multi-spectral Flash Imaging using Region-based Weight Map)

  • 최봉석;김대철;이철희;하영호
    • 전자공학회논문지
    • /
    • 제50권9호
    • /
    • pp.127-135
    • /
    • 2013
  • 저조도 환경에서 카메라로 영상을 획득하기 위해 일반적으로 가시광 플래시를 사용하거나 장노출 기법을 사용하게 된다. 그러나 가시광 플래시를 사용할 때 플래시 광에 의한 색 왜곡이나 적목 현상, 눈부심에 의한 거부감을 발생시킨다. 또한 장노출을 사용하게 되면 물체의 움직임에 의한 흔들림 현상이 발생하게 된다. 따라서 최근에는 이러한 단점을 극복하고, 저조도 환경에서 고화질의 영상을 획득하기 위하여 멀티 스팩트럴 플래시(Multi-spectral flash image)를 이용하여 영상을 획득하는 방법이 소개되었다. 이 방법은 가시광과 UV/IR스펙트럼의 다섯 채널을 이용하여 가시광영상의 색 정보와 UV/IR 스팩트럼 영상의 세부정보를 최적화하여 영상을 획득하는 방법이다. 하지만, 픽셀 기반의 최적화 과정에 있어 색 왜곡과 다른 잡음을 발생시키게 된다. 따라서 본 논문에서는 이러한 색 왜곡과 잡음을 개선하기 위해 영역 기반의 가중치 맵을 최적화 방법에 적용하여 색 왜곡을 개선하는 알고리즘을 제안한다. 먼저, 영상에 대하여 Canny 에지 검출 방법을 사용하여 영상의 윤곽을 검출하였다. 이를 가중치 맵으로 최적화방법에 적용함으로, 세부 영역에 대하여 UV/IR 플래시 영상의 정보에 가중치를 부여하고, 평탄한 영역에 대하여 가시광 영상의 색 정보를 가중치를 부여하여 색 왜곡을 개선하였다. 제안한 방법을 평가하기 위하여 실험을 통하여 제안한 방법과 이전방법을 비교하였고, 객관적 평가와 주관적 평가 모두 제안한 방법이 우수한 성능을 나타내었다.

KOMPSAT-2 MSC 전처리시스템을 위한 RPC(Rational Polynomial Coefficient)생성 기법에 관한 연구 (A Study on the Method of Generating RPC for KOMPSAT-2 MSC Pre-Processing System)

  • 서두천;임효숙
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 추계학술발표회 논문집
    • /
    • pp.417-422
    • /
    • 2003
  • The KOMPSAT-2 MSC(Multi-Spectral Camera), with high spatial resolution, is currently under development and will be launched in the end of 2004. A sensor model relates a 3-D ground position to the corresponding 2-D image position and describes the imaging geometry that is necessary to reconstruct the physical imaging process. The Rational Function Model (RFM) has been considered as a generic sensor model. form. The RFM is technically applicable to all types of sensors such as frame, pushbroom, whiskbroom and SAR etc. With the increasing availability of the new generation imaging sensors, accurate and fast rectification of digital imagery using a generic sensor model becomes of great interest to the user community. This paper describes the procedure to generation of the RPC (Rational Polynomial Coefficients) for KOMPSAT-2 MSC.

  • PDF