• Title/Summary/Keyword: Multi-source Spatial Data

Search Result 42, Processing Time 0.028 seconds

Multi-aperture Photometry Pipeline for DEEP-South Data

  • Chang, Seo-Won;Byun, Yong-Ik;Kim, Myung-Jin;Moon, Hong-Kyu;Yim, Hong-Suh;Shin, Min-Su;Kang, Young-Woon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2016
  • We present a multi-aperture photometry pipeline for DEEP-South (Deep Ecliptic Patrol of the Southern Sky) time-series data, written in C. The pipeline is designed to do robust high-precision photometry and calibration of non-crowded fields with a varying point-spread function, allowing for the wholesale search and characterization of both temporal and spatial variabilities. Our time-series photometry method consists of three parts: (i) extracting all point sources with several pixel/blind parameters, (ii) determining the optimized aperture for each source where we consider whether the measured flux within the aperture is contaminated by unwanted artifacts, and (iii) correcting position-dependent variations in the PSF shape across the mosaic CCD. In order to provide faster access to the resultant catalogs, we also utilize an efficient indexing technique using compressed bitmap indices (FastBit). Lastly, we focus on the development and application of catalog-based searches that aid the identification of high-probable single events from the indexed database. This catalog-based approach is still useful to identify new point-sources or moving objects in non-crowded fields. The performance of the pipeline is being tested on various sets of time-series data available in several archives: DEEP-South asteroid survey and HAT-South/MMT exoplanet survey data sets.

  • PDF

Study on Representation of Pollutants Delivery Process using Watershed Model (수질오염총량관리를 위한 유역모형의 유달 과정 재현방안 연구)

  • Hwang, Ha Sun;Rhee, Han Pil;Lee, Sung Jun;Ahn, Ki Hong;Park, Ji Hyung;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.589-599
    • /
    • 2016
  • Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.

Spatial OLAP Implementation for GIS Decision-Making - With emphasis on Urban Planning - (GIS 의사결정을 지원하기 위한 Spatial OLAP 구현 - 도시계획을 중심으로 -)

  • Kyung, Min-Ju;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.689-698
    • /
    • 2009
  • SOLAP system integrates and complements the functions of both OLAP and GIS systems. This enables users not only to easily access geospatial data but also to analyze and extract information for decision making. In this study a SOLAP system was designed and implemented to provide urban planners with GIS information when making urban planning decisions. Rapid urbanization in Korea has brought about ill-balanced urban structure as the result of development without detailed analysis of urban plans. Systematic urban planning procedures and automated systems are crucial for detail analysis of future development plans. Data regarding the development regulations and current status of land use need to be assessed precisely and instantly. Multi-dimensional aspects of a suggested plan must be formulated instantly and examined thoroughly using 'what if' scenarios to come up with a best possible plan. The SOLAP system presented in this study designed the dimension tables and the fact tables for supplying timely geospatial information to the planners when making decisions regarding urban planning. The database was implemented using open source DBMS and was populated with necessary attribute data which was freely available from the Statistics Korea bureau homepage. It is anticipated the SOLAP system presented in this study will contribute to better urban planning decisions in Korea through more timely and accurate provision of geospatial information.

Training Performance Analysis of Semantic Segmentation Deep Learning Model by Progressive Combining Multi-modal Spatial Information Datasets (다중 공간정보 데이터의 점진적 조합에 의한 의미적 분류 딥러닝 모델 학습 성능 분석)

  • Lee, Dae-Geon;Shin, Young-Ha;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.91-108
    • /
    • 2022
  • In most cases, optical images have been used as training data of DL (Deep Learning) models for object detection, recognition, identification, classification, semantic segmentation, and instance segmentation. However, properties of 3D objects in the real-world could not be fully explored with 2D images. One of the major sources of the 3D geospatial information is DSM (Digital Surface Model). In this matter, characteristic information derived from DSM would be effective to analyze 3D terrain features. Especially, man-made objects such as buildings having geometrically unique shape could be described by geometric elements that are obtained from 3D geospatial data. The background and motivation of this paper were drawn from concept of the intrinsic image that is involved in high-level visual information processing. This paper aims to extract buildings after classifying terrain features by training DL model with DSM-derived information including slope, aspect, and SRI (Shaded Relief Image). The experiments were carried out using DSM and label dataset provided by ISPRS (International Society for Photogrammetry and Remote Sensing) for CNN-based SegNet model. In particular, experiments focus on combining multi-source information to improve training performance and synergistic effect of the DL model. The results demonstrate that buildings were effectively classified and extracted by the proposed approach.

NEW PHOTOMETRIC PIPELINE TO EXPLORE TEMPORAL AND SPATIAL VARIABILITY WITH KMTNET DEEP-SOUTH OBSERVATIONS

  • Chang, Seo-Won;Byun, Yong-Ik;Shin, Min-Su;Yi, Hahn;Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Cha, Sang-Mok;Lee, Yongseok
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.5
    • /
    • pp.129-142
    • /
    • 2018
  • The DEEP-South (the Deep Ecliptic Patrol of the Southern Sky) photometric census of small Solar System bodies produces massive time-series data of variable, transient or moving objects as a by-product. To fully investigate unexplored variable phenomena, we present an application of multi-aperture photometry and FastBit indexing techniques for faster access to a portion of the DEEP-South year-one data. Our new pipeline is designed to perform automated point source detection, robust high-precision photometry and calibration of non-crowded fields which have overlap with previously surveyed areas. In this paper, we show some examples of catalog-based variability searches to find new variable stars and to recover targeted asteroids. We discover 21 new periodic variables with period ranging between 0.1 and 31 days, including four eclipsing binary systems (detached, over-contact, and ellipsoidal variables), one white dwarf/M dwarf pair candidate, and rotating variable stars. We also recover astrometry (< ${\pm}1-2$ arcsec level accuracy) and photometry of two targeted near-earth asteroids, 2006 DZ169 and 1996 SK, along with the small- (~0.12 mag) and relatively large-amplitude (~0.5 mag) variations of their dominant rotational signals in R-band.

Development of an Improved Numerical Methodology for Design and Modification of Large Area Plasma Processing Chamber

  • Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.221-221
    • /
    • 2014
  • The present work proposes an improved numerical simulator for design and modification of large area capacitively coupled plasma (CCP) processing chamber. CCP, as notoriously well-known, demands the tremendously huge computational cost for carrying out transient analyses in realistic multi-dimensional models, because electron dissociations take place in a much smaller time scale (${\Delta}t{\approx}10-8{\sim}10-10$) than time scale of those happened between neutrals (${\Delta}t{\approx}10-1{\sim}10-3$), due to the rf drive frequencies of external electric field. And also, for spatial discretization of electron flux (Je), exponential scheme such as Scharfetter-Gummel method needs to be used in order to alleviate the numerical stiffness and resolve exponential change of spatial distribution of electron temperature (Te) and electron number density (Ne) in the vicinity of electrodes. Due to such computational intractability, it is prohibited to simulate CCP deposition in a three-dimension within acceptable calculation runtimes (<24 h). Under the situation where process conditions require thickness non-uniformity below 5%, however, detailed flow features of reactive gases induced from three-dimensional geometric effects such as gas distribution through the perforated plates (showerhead) should be considered. Without considering plasma chemistry, we therefore simulated flow, temperature and species fields in three-dimensional geometry first, and then, based on that data, boundary conditions of two-dimensional plasma discharge model are set. In the particular case of SiH4-NH3-N2-He CCP discharge to produce deposition of SiNxHy thin film, a cylindrical showerhead electrode reactor was studied by numerical modeling of mass, momentum and energy transports for charged particles in an axi-symmetric geometry. By solving transport equations of electron and radicals simultaneously, we observed that the way how source gases are consumed in the non-isothermal flow field and such consequences on active species production were outlined as playing the leading parts in the processes. As an example of application of the model for the prediction of the deposited thickness uniformity in a 300 mm wafer plasma processing chamber, the results were compared with the experimentally measured deposition profiles along the radius of the wafer varying inter-electrode gap. The simulation results were in good agreement with experimental data.

  • PDF

A Study on Extending Successive Observation Coverage of MODIS Ocean Color Product (MODIS 해색 자료의 유효관측영역 확장에 대한 연구)

  • Park, Jeong-Won;Kim, Hyun-Cheol;Park, Kyungseok;Lee, Sangwhan
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.513-521
    • /
    • 2015
  • In the processing of ocean color remote sensing data, spatio-temporal binning is crucial for securing effective observation area. The validity determination for given source data refers to the information in Level-2 flag. For minimizing the stray light contamination, NASA OBPG's standard algorithm suggests the use of large filtering window but it results in the loss of effective observation area. This study is aimed for quality improvement of ocean color remote sensing data by recovering/extending the portion of effective observation area. We analyzed the difference between MODIS/Aqua standard and modified product in terms of chlorophyll-a concentration, spatial and temporal coverage. The recovery fractions in Level-2 swath product, Level-3 daily composite product, 8-day composite product, and monthly composite product were $13.2({\pm}5.2)%$, $30.8({\pm}16.3)%$, $15.8({\pm}9.2)%$, and $6.0({\pm}5.6)%$, respectively. The mean difference between chlorophyll-a concentrations of two products was only 0.012%, which is smaller than the nominal precision of the geophysical parameter estimation. Increase in areal coverage also results in the increase in temporal density of multi-temporal dataset, and this processing gain was most effective in 8-day composite data. The proposed method can contribute for the quality enhancement of ocean color remote sensing data by improving not only the data productivity but also statistical stability from increased number of samples.

Evaluation of the Accuracy of IMERG at Multiple Temporal Scales (시간 해상도 변화에 따른 IMERG 정확도 평가)

  • KIM, Joo-Hun;CHOI, Yun-Seok;KIM, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.102-114
    • /
    • 2017
  • The purpose of this study was the assessment of the accuracy of Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG), a rainfall data source derived from satellite images, for evaluation of its applicability to use in ungauged or inaccessible areas. The study area was the overall area of the Korean peninsula divided into six regions. Automated Surface Observing System (ASOS) rainfall data from the Korean Meteorological Administration and IMERG satellite rainfall were used. Their average correlation coefficient was 0.46 for a 1-h temporal resolution, and it increased to 0.69 for a 24-h temporal resolution. The IMERG data quantitatively estimated less than the rainfall totals from ground gauges, and the bias decreased as the temporal resolution was decreased. The correlation coefficients of the two rainfall events, which had relatively greater rainfall amounts, were 0.68 and 0.69 for a 1-h temporal resolution. Additionally, the spatial distributions of the ASOS and IMERG data were similar to each other. The study results showed that the IMERG data were very useful in the assessment of the hydro-meteorological characteristics of ungauged or inaccessible areas. In a future study, verification of the accuracy of satellite-derived rainfall data will be performed by expanding the analysis periods and applying various statistical techniques.

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF

WPS-based Satellite Image Processing onWeb Framework and Cloud Computing Environment (클라우드 컴퓨팅과 웹 프레임워크 환경에서 WPS 기반 위성영상 정보처리)

  • Yoon, Gooseon;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.561-570
    • /
    • 2015
  • Till now, applications of many kinds of satellite images have been accentuated in the datacentric scientific studies, researches regarding system development and concerned technologies for them are on the un-matured stage. Especially, satellite image processing requires large volume data handling and specific analysis functionalities, so that practical necessity of base study for system development is emphasized on. In the view of information system, various edged trends such as web standards, cloud computing, or web framework are utilized owing to their application benefits proven and business needs. Considered these aspects, a testing implementation was carried out using OpenStack cloud computing environment and e-government framework. As for the processing functions, WPS in GeoServer, as one of OGC web standards, was applied to perform interoperable data processing scheme between two or more remote servers. Working with the server implemented, client-side was also developed using several open sources such as HTML 5, jQuery, and OpenLayers. If it is that completed further experiments onsite applications with actual multi-data sets and extension of on-demand functionalities with the result of this study, it will be referred as an example case model for complicated and complex system design and implementation which needs cloud computing, geo-spatial web standards and web framework.