• Title/Summary/Keyword: Multi-sensor network

Search Result 558, Processing Time 0.024 seconds

A Multi-hash Chain Scheme for Ensure Data Integirty Nodes in Wireless Sensor Network (무선 센서 네트워크에서 데이터 무결성을 보장하기 위한 다중 해쉬 체인 기법)

  • Park, Gil-Cheol;Jeong, Yoon-Su;Kim, Yong-Tae;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2358-2364
    • /
    • 2010
  • Recently, In the wireless sensor network, a study which guarantees integrity of not only data gathered from sensor node but also energy consumption of it is now going on. However, the existing study cannot guarantee data integrity and overhead of cluster head which merges data from sensor node. This paper proposes multi-path hash chain technique which guarantees integrity of merged data and reduces overhead of cluster head when cluster head merges with data transmitted from sensor node. The proposed technique forms multi-hash chain dividing main-path and assistance-path to guarantee data integrity of cluster head, when merges data. The assistance-path, which is used when main-path is not, supports integrity of sensor node while minimizing overhead of cluster head when sensor node is authenticate.

A FRAMEWORK FOR QUERY PROCESSING OVER HETEROGENEOUS LARGE SCALE SENSOR NETWORKS

  • Lee, Chung-Ho;Kim, Min-Soo;Lee, Yong-Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.101-104
    • /
    • 2007
  • Efficient Query processing and optimization are critical for reducing network traffic and decreasing latency of query when accessing and manipulating sensor data of large-scale sensor networks. Currently it has been studied in sensor database projects. These works have mainly focused on in-network query processing for sensor networks and assumes homogeneous sensor networks, where each sensor network has same hardware and software configuration. In this paper, we present a framework for efficient query processing over heterogeneous sensor networks. Our proposed framework introduces query processing paradigm considering two heterogeneous characteristics of sensor networks: (1) data dissemination approach such as push, pull, and hybrid; (2) query processing capability of sensor networks if they may support in-network aggregation, spatial, periodic and conditional operators. Additionally, we propose multi-query optimization strategies supporting cross-translation between data acquisition query and data stream query to minimize total cost of multiple queries. It has been implemented in WSN middleware, COSMOS, developed by ETRI.

  • PDF

A Large-scale Multi-track Mobile Data Collection Mechanism for Wireless Sensor Networks

  • Zheng, Guoqiang;Fu, Lei;Li, Jishun;Li, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.857-872
    • /
    • 2014
  • Recent researches reveal that great benefit can be achieved for data gathering in wireless sensor networks (WSNs) by employing mobile data collectors. In order to balance the energy consumption at sensor nodes and prolong the network lifetime, a multi-track large-scale mobile data collection mechanism (MTDCM) is proposed in this paper. MTDCM is composed of two phases: the Energy-balance Phase and the Data Collection Phase. In this mechanism, the energy-balance trajectories, the sleep-wakeup strategy and the data collection algorithm are determined. Theoretical analysis and performance simulations indicate that MTDCM is an energy efficient mechanism. It has prominent features on balancing the energy consumption and prolonging the network lifetime.

Research on Multi-precision Multiplication for Public Key Cryptography over Embedded Devices (임베디드 장비 상에서의 공개키 기반 암호를 위한 다중 곱셈기 최신 연구 동향)

  • Seo, Hwajeong;Kim, Howon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.999-1007
    • /
    • 2012
  • Multi-precision multiplication over public key cryptography should be considered for performance enhancement due to its computational complexity. Particularly, embedded device is not suitable to execute high complex computation, public key cryptography, because of its limited computational power and capacity. To overcome this flaw, research on multi-precision multiplication with fast computation and small capacity is actively being conducted. In the paper, we explore the cutting-edge technology of multi-precision multiplication for efficient implementation of public key cryptography over sensor network. This survey report will be used for further research on implementation of public key cryptography over sensor network.

Design and Implementation of Intelligent Wireless Sensor Network Based Home Network System (무선 센서 네트워크 기반의 지능형 홈 네트워크 시스템 설계 및 구현)

  • Shin, Jae-Wook;Yoon, Ba-Da;Kim, Sung-Gil;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.465-468
    • /
    • 2007
  • An intelligent home network system using low-power and low-cost sensor nodes was designed and implemented. In Intelligent Home Network System, active home appliances control is composed of RSSI (Received Signal Strength Indicator) based user indoor location tracking, dynamic multi-hop routing, and learning integration remote-control. Through the remote-control learning, home appliances can be controlled in wireless network environment. User location information for intelligent service is calculated using RSSI based Triangle measurement method, and then the received location information is passed to Smoothing Algorithm to reduce error rate. In order to service Intelligent Home Network, moreover, the sensor node is designed to be held by user. The gathered user data is transmitted through dynamic multi-hop routing to server, and real-time user location & environment information are displayed on monitoring program.

  • PDF

Implementation of LMPR on TinyOS for Wireless Sensor Network (전송 부하를 분산하는 무선 센서 네트워크 구축을 위한 TinyOS 기반 LMPR 구현)

  • Oh, Yong-Taek;Kim, Pung-Hyeok;Jeong, Kug-Sang;Choi, Deok-Jai
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.136-146
    • /
    • 2006
  • In Wireless Sensor Network(WSN) a sensor node transfers sensing data to the base-node through multi-hop because of the limited transmission range. Also because of the limited energy of the sensor node, the sensor nodes are required to consume their energy evenly to prolong the lifetime of the network. LMPR is a routing protocol for WSN, LMPR configures the network autonomously based on level which is the depth from the base-node, and distributes the transmission and computation load of the network to each sensor node. This paper implements LMPR on TinyOS and experiments on the performance of LMPR in WSN. As the result, the average of the received rate of LMPR is 91.39% and LMPR distributes the load of the transmission and computation about 4.6 times compare to the shortest cost routing protocol. We expect LMPR evenly distributes the transmission and computation load of the network to each node, and the lifetime of the network will be longer than it used to be.

  • PDF

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

Power Efficient Multi-hop Routing Protocol in Cluster for Wireless Sensor Networks (무선 센서네트워크 환경에서의 효율적인 전력소비를 위한 라우팅 프로토콜)

  • Bae, Dae-Jin;Kim, Jong-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.142-147
    • /
    • 2008
  • In wireless sensor networks, one of the most important issue is improvement of network lifetime with an efficient energy consumption. we repose effective multi-hop routing algorithm which increases the number of nodes alive at any time. In our algorithm we use the dynamic selection of cluster head and short distance transmission method. We simulated the proposed algorithm by using Network Simulator 2 and compared its performance with LEACH. The experimental result shows that the number of the nodes alive is increased up to 39.71[%] during the simulation time.

Control and acquisition system for USN sensors (USN 센서 제어 및 정보 취득 시스템)

  • Nam, Seung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.409-416
    • /
    • 2009
  • A lot of valuable-piece of information are acquisited through ubiquitous sensor network(USN) system composed of man-made sensors. The telemetry system used for communicating to access informations between nature and human-beings monitors and estimates the status of infrastructure, utilities and natural environments to prevent hidden disasters, improving quality of life and productivity in multi-directional views. That would be the reason of USN subsistence. This paper will be a review on how to build long-term USN system. Therefore, this paper focuses on reviewing the sensor interface and the sensor network interface and its significance as the foundation stone for varying USN service profiles and showing its development example, and finally proposing a few of things to set up future-oriented USN open system.

Design and Implementation of the Active Multi-Agent Middleware for the Sensor Network Application (센서 네트워크 응용을 위한 능동적 다중 에이전트 미들웨어 설계 및 구현)

  • Lee, Yon-Sik;Jang, Min-Seok
    • The KIPS Transactions:PartA
    • /
    • v.18A no.4
    • /
    • pp.159-164
    • /
    • 2011
  • In this paper, we suggest the active multi-agent middleware for the sensor network application. For this, firstly we design and implement the active rule based mobile agent middleware. The mobile agent in the proposed system visits the destination sensor nodes according to the migration list offered by the meta table in the name space of the naming agent, acquires and transmits sensor data according to the purpose and needs through the active rules, and directly executes the actions corresponding to the optional events(changed sensor data and/or time etc.). And then, we show the potential applicability of the active rule based mobile agent middleware in various active sensor networks through the interaction with the rule base system and context database system.