• Title/Summary/Keyword: Multi-sensor Fusion

Search Result 201, Processing Time 0.026 seconds

Multisensor-Based Navigation of a Mobile Robot Using a Fuzzy Inference in Dynamic Environments (동적환경에서 퍼지추론을 이용한 이동로봇의 다중센서기반의 자율주행)

  • 진태석;이장명
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.79-90
    • /
    • 2003
  • In this paper, we propose a multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using multi-ultrasonic sensor. Instead of using “sensor fusion” method which generates the trajectory of a robot based upon the environment model and sensory data, “command fusion” method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as experiments with IRL-2002. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Fuzzy Inference Based Collision Free Navigation of a Mobile Robot using Sensor Fusion (퍼지추론기반 센서융합 이동로봇의 장애물 회피 주행기법)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • This paper presents a collision free mobile robot navigation based on the fuzzy inference fusion model in unkonown environments using multi-ultrasonic sensor. Six ultrasonic sensors are used for the collision avoidance approach where CCD camera sensors is used for the trajectory following approach. The fuzzy system is composed of three inputs which are the six distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and three cost functions for the robot's movement, direction, obstacle avoidance, and rotation. For the evaluation of the proposed algorithm, we performed real experiments with mobile robot with ultrasonic sensors. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Machine Learning-Based Filter Parameter Estimation for Inertial/Altitude Sensor Fusion (관성/고도 센서 융합을 위한 기계학습 기반 필터 파라미터 추정)

  • Hyeon-su Hwang;Hyo-jung Kim;Hak-tae Lee;Jong-han Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.884-887
    • /
    • 2023
  • Recently, research has been actively conducted to overcome the limitations of high-priced single sensors and reduce costs through the convergence of low-cost multi-variable sensors. This paper estimates state variables through asynchronous Kalman filters constructed using CVXPY and uses Cvxpylayers to compare and learn state variables estimated from CVXPY with true value data to estimate filter parameters of low-cost sensors fusion.

Multi-target Tracking Filters and Data Association: A Survey (다중표적 추적필터와 자료연관 기법동향)

  • Song, Taek Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.313-322
    • /
    • 2014
  • This paper is to survey and put in perspective the working methods of multi-target tracking in clutter. This paper includes theories and practices for data association and related filter structures and is motivated by increasing interest in the area of target tracking, security, surveillance, and multi-sensor data fusion. It is hoped that it will be useful in view of taking into consideration a full understanding of existing techniques before using them in practice.

Development of A Multi-sensor Fusion-based Traffic Information Acquisition System with Robust to Environmental Changes using Mono Camera, Radar and Infrared Range Finder (환경변화에 강인한 단안카메라 레이더 적외선거리계 센서 융합 기반 교통정보 수집 시스템 개발)

  • Byun, Ki-hoon;Kim, Se-jin;Kwon, Jang-woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.36-54
    • /
    • 2017
  • The purpose of this paper is to develop a multi-sensor fusion-based traffic information acquisition system with robust to environmental changes. it combines the characteristics of each sensor and is more robust to the environmental changes than the video detector. Moreover, it is not affected by the time of day and night, and has less maintenance cost than the inductive-loop traffic detector. This is accomplished by synthesizing object tracking informations based on a radar, vehicle classification informations based on a video detector and reliable object detections of a infrared range finder. To prove the effectiveness of the proposed system, I conducted experiments for 6 hours over 5 days of the daytime and early evening on the pedestrian - accessible road. According to the experimental results, it has 88.7% classification accuracy and 95.5% vehicle detection rate. If the parameters of this system is optimized to adapt to the experimental environment changes, it is expected that it will contribute to the advancement of ITS.

Map-Building and Position Estimation based on Multi-Sensor Fusion for Mobile Robot Navigation in an Unknown Environment (이동로봇의 자율주행을 위한 다중센서융합기반의 지도작성 및 위치추정)

  • Jin, Tae-Seok;Lee, Min-Jung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.434-443
    • /
    • 2007
  • Presently, the exploration of an unknown environment is an important task for thee new generation of mobile service robots and mobile robots are navigated by means of a number of methods, using navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems. This paper presents a technique for localization of a mobile robot using fusion data of multi-ultrasonic sensors and vision system. The mobile robot is designed for operating in a well-structured environment that can be represented by planes, edges, comers and cylinders in the view of structural features. In the case of ultrasonic sensors, these features have the range information in the form of the arc of a circle that is generally named as RCD(Region of Constant Depth). Localization is the continual provision of a knowledge of position which is deduced from it's a priori position estimation. The environment of a robot is modeled into a two dimensional grid map. we defines a vision-based environment recognition, phisically-based sonar sensor model and employs an extended Kalman filter to estimate position of the robot. The performance and simplicity of the approach is demonstrated with the results produced by sets of experiments using a mobile robot.

Obstacle Avoidance and Planning using Optimization of Cost Fuction based Distributed Control Command (분산제어명령 기반의 비용함수 최소화를 이용한 장애물회피와 주행기법)

  • Bae, Dongseog;Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • In this paper, we propose a homogeneous multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments with moving obstacles using multi-ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as real experiments with mobile robot, AmigoBot. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Synchronous Interfusion of the Compensatory Filters Based on Multi-rate Sensors for the Control of the Autonomous Vehicle (자율주행 차량 제어를 위한 다중 주기 센서 기반의 상보 필터 동기 융합)

  • Bak, Jeong-Hyeon;Lee, Kwanghee;Lee, Chul-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.220-227
    • /
    • 2014
  • This paper presents about multi-rate sensors' synchronization and filter fusion via a sigmoid function of the Kalman filter. To synchronize multi-rate sensors, the estimation states of the Kalman filter is modified. A specific matrix that makes the filter choose sensor values only updated is multiplied to measurement matrix. For the filter that has weak points on some criteria, filter fusion is suggested by using sigmoid function. Modified kalman filter is tested with practical case. A sigmoid function was designed for the test and the performance of the modified function is estimated with respect to conventional Kalman filter. Unscented Kalman filter is used to the base filter of the suggested filter because of its stability.

Characteristics Analysis of Total Internal Reflection-based Dielectric Multi-layer Sensor Using Plasmonics Phenomena (플라즈모닉스 현상을 이용한 전반사 기반 다층 유전체 박막 센서의 특성 분석)

  • Kim, Hong-Seung;Lee, Tae-Kyeong;Kim, Doo-Gun;Jung, You-Ra;Oh, Geum-Yoon;Lee, Byeong-Hyeon;Ki, Hyun-Chul;Choi, Young-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.516-520
    • /
    • 2012
  • In this paper, we have theoretically analyzed and designed a dielectric multi-layer sensor with a SPR (surface plasmon resonance) using analytical calculation and FDTD (finite difference time-domain) methods. The proposed structure is composed of periodic layer and thin metal film. It has many advantages. One of that is a high sensitivity of the SPR. Another is a high Q-factor of the characteristics in the PhC (photonic crystals) micro-cavity structure. The incident light has double resonance characteristics, because the filtered light by PhC structure, dielectric multi-layer, is met the thin metal film for SPR effect. We have also observed the change of resonance characteristics according to the variation of effective index on the metal film.

Federated Information Mode-Matched Filters in ACC Environment

  • Kim Yong-Shik;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, a target tracking algorithm for tracking maneuvering vehicles is presented. The overall algorithm belongs to the category of an interacting multiple-model (IMM) algorithm used to detect multiple targets using fused information from multiple sensors. First, two kinematic models are derived: a constant velocity model for linear motions, and a constant-speed turn model for curvilinear motions. Fpr the constant-speed turn model, a nonlinear information filter is used in place of the extended Kalman filter. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. The model-matched filter used in multi-sensor environments takes the form of a federated nonlinear information filter. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. In this paper, the structural features and information sharing principle of the federated information filter are discussed. The performance of the suggested algorithm using a Monte Carlo simulation under the two patterns is evaluated.