• 제목/요약/키워드: Multi-scale models

검색결과 213건 처리시간 0.022초

STATUS AND PERSPECTIVE OF TWO-PHASE FLOW MODELLING IN THE NEPTUNE MULTISCALE THERMAL-HYDRAULIC PLATFORM FOR NUCLEAR REACTOR SIMULATION

  • BESTION DOMINIQUE;GUELFI ANTOINE;DEN/EER/SSTH CEA-GRENOBLE,
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.511-524
    • /
    • 2005
  • Thermalhydraulic reactor simulation of tomorrow will require a new generation of codes combining at least three scales, the CFD scale in open medium, the component scale and the system scale. DNS will be used as a support for modelling more macroscopic models. NEPTUNE is such a new generation multi-scale platform developed jointly by CEA-DEN and EDF-R&D and also supported by IRSN and FRAMATOME-ANP. The major steps towards the next generation lie in new physical models and improved numerical methods. This paper presents the advances obtained so far in physical modelling for each scale. Macroscopic models of system and component scales include multi-field modelling, transport of interfacial area, and turbulence modelling. Two-phase CFD or CMFD was first applied to boiling bubbly flow for departure from nucleate boiling investigations and to stratified flow for pressurised thermal shock investigations. The main challenges of the project are presented, some selected results are shown for each scale, and the perspectives for future are also drawn. Direct Numerical Simulation tools with Interface Tracking Techniques are also developed for even smaller scale investigations leading to a better understanding of basic physical processes and allowing the development of closure relations for macroscopic and CFD models.

A study on N-dimensional quad-tree decomposition

  • Yi, Cheon-Hee;Yi, Jae-Young
    • 반도체디스플레이기술학회지
    • /
    • 제8권1호
    • /
    • pp.43-48
    • /
    • 2009
  • We have examined the problem of the number of quad-tree blocks that an n-dimensional rectangle will be decomposed into on the average. the contribution of this paper are both practical and theoretical. In this paper, we develops the overlapping multi-scale models and the region quad-tree models which is useful in computer graphics animation, image processing, pattern recognition and also for modeling three dimensional objects. These models, which represent something of a conceptual departure from other models developed for multi-scale framework were developed with the specific interest of producing smooth estimates.

  • PDF

RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험 (An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests)

  • 김남식;이지호;장승필
    • 한국지진공학회논문집
    • /
    • 제8권5호통권39호
    • /
    • pp.35-43
    • /
    • 2004
  • 대형 구조물의 지진응답을 실험적으로 연구할 경우, 실험장비의 용량과 실험모형의 크기 제약으로 인하여 축소모형이 일반적으로 적용되고 있다. 그러나 구조물의 지진응답은 비탄성 거동을 나타내기 때문에 거동예측이 복잡함에도 불구하고, 축소모형의 지진실험 결과로부터 원형구조물의 지진응답을 유추하기 위한 상사법칙의 연구는 미비한 실정이다. 철근콘크리트 구조물의 축소모형 제작 시 상사율이 커지면 상대적으로 부가질량이 증가하며, 또한 굵은 골재 크기의 영향으로 원형구조물과 축소모형의 제작에 동일한 재료를 사용하지 않는 것이 바람직하다. 따라서 동일한 재료를 사용하지 않을 경우, 상사법칙은 기하학적인 상사율과 재료적인 등가탄성계수비에 의존하게 된다. 본 연구에서는 원형구조물과 축소모형에 각각 적용되는 normal-concrete와 micro-concrete의 재료 비선형성을 파악하기 위해 압축강도시험을 수행하여, 재료의 거동구간을 극한 변형률을 기준으로 등가의 다단계로 나누어 등가탄성계수비를 적용시킴으로써 지진손상의 정도를 고려할 수 있는 equivalent multi-phase similitude law를 유도하였다. 유도된 상사법칙을 고려한 유사동적실험 알고리즘을 구성하였으며, 실험적인 검증을 위하여 철근콘크리트 column에 대하여 원형구조물과 1/5축소모형을 재료시험에서 정의한 등가탄성계수비를 고려하여 설계, 제작하였다. 검증실험에서는 constant modulus ratio와 variable modulus ratio를 적용하여 준정적실험과 유사동적실험을 수행한 결과, equivalent multi-phase similitude law를 고려한 유사동적실험 알고리즘에 의한 축소모형의 응답결과가 원형구조물의 거동을 비교적 정확히 재현함을 확인하였다.

MULTI-SCALE THERMAL-HYDRAULIC ANALYSIS OF PWRS USING THE CUPID CODE

  • Yoon, Han Young;Cho, Hyoung Kyu;Lee, Jae Ryong;Park, Ik Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.831-846
    • /
    • 2012
  • KAERI has developed a two-phase CFD code, CUPID, for a refined calculation of transient two-phase flows related to nuclear reactor thermal hydraulics, and its numerical models have been verified in previous studies. In this paper, the CUPID code is validated against experiments on the downcomer boiling and moderator flow in a Calandria vessel. Physical models relevant to the validation are discussed. Thereafter, multi-scale thermal hydraulic analyses using the CUPID code are introduced. At first, a component-scale calculation for the passive condensate cooling tank (PCCT) of the PASCAL experiment is linked to the CFD-scale calculation for local boiling heat transfer outside the heat exchanger tube. Next, the Rossendorf coolant mixing (ROCOM) test is analyzed by using the CUPID code, which is implicitly coupled with a system-scale code, MARS.

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang;Shanshan Bu;Bing Zhou;Zhenzhong Li;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1140-1151
    • /
    • 2023
  • Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

An Internet-based computing framework for the simulation of multi-scale response of structural systems

  • Chen, Hung-Ming;Lin, Yu-Chih
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.17-37
    • /
    • 2011
  • This paper presents a new Internet-based computational framework for the realistic simulation of multi-scale response of structural systems. Two levels of parallel processing are involved in this frame work: multiple local distributed computing environments connected by the Internet to form a cluster-to-cluster distributed computing environment. To utilize such a computing environment for a realistic simulation, the simulation task of a structural system has been separated into a simulation of a simplified global model in association with several detailed component models using various scales. These related multi-scale simulation tasks are distributed amongst clusters and connected to form a multi-level hierarchy. The Internet is used to coordinate geographically distributed simulation tasks. This paper also presents the development of a software framework that can support the multi-level hierarchical simulation approach, in a cluster-to-cluster distributed computing environment. The architectural design of the program also allows the integration of several multi-scale models to be clients and servers under a single platform. Such integration can combine geographically distributed computing resources to produce realistic simulations of structural systems.

Dual-scale BERT using multi-trait representations for holistic and trait-specific essay grading

  • Minsoo Cho;Jin-Xia Huang;Oh-Woog Kwon
    • ETRI Journal
    • /
    • 제46권1호
    • /
    • pp.82-95
    • /
    • 2024
  • As automated essay scoring (AES) has progressed from handcrafted techniques to deep learning, holistic scoring capabilities have merged. However, specific trait assessment remains a challenge because of the limited depth of earlier methods in modeling dual assessments for holistic and multi-trait tasks. To overcome this challenge, we explore providing comprehensive feedback while modeling the interconnections between holistic and trait representations. We introduce the DualBERT-Trans-CNN model, which combines transformer-based representations with a novel dual-scale bidirectional encoder representations from transformers (BERT) encoding approach at the document-level. By explicitly leveraging multi-trait representations in a multi-task learning (MTL) framework, our DualBERT-Trans-CNN emphasizes the interrelation between holistic and trait-based score predictions, aiming for improved accuracy. For validation, we conducted extensive tests on the ASAP++ and TOEFL11 datasets. Against models of the same MTL setting, ours showed a 2.0% increase in its holistic score. Additionally, compared with single-task learning (STL) models, ours demonstrated a 3.6% enhancement in average multi-trait performance on the ASAP++ dataset.

Unequal depth beam to column connection joint

  • Ben Mou;Aijia Zhang;Wei Pan
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.823-837
    • /
    • 2023
  • This paper presents the seismic performance of seven beam-column joints with an eccentricity between beam depths under cyclic loadings. The failure modes of the panel zone were divided into two types. One was the shear force failure that appeared in the entire panel zone (SFEPZ), the other was the shear force failure that appeared in the partial panel zone (SFPPZ). Seven finite element models were established using multi-scale methods. Compared with the experimental specimens, the hysteretic loops exhibited a similar trend. The multi-scale models could accurately simulate the experimental results. Furthermore, the calculation formulas of yield and plastic shear capacity of unequal-depth joints with outer annular stiffener were proposed.

Real Scene Text Image Super-Resolution Based on Multi-Scale and Attention Fusion

  • Xinhua Lu;Haihai Wei;Li Ma;Qingji Xue;Yonghui Fu
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.427-438
    • /
    • 2023
  • Plenty of works have indicated that single image super-resolution (SISR) models relying on synthetic datasets are difficult to be applied to real scene text image super-resolution (STISR) for its more complex degradation. The up-to-date dataset for realistic STISR is called TextZoom, while the current methods trained on this dataset have not considered the effect of multi-scale features of text images. In this paper, a multi-scale and attention fusion model for realistic STISR is proposed. The multi-scale learning mechanism is introduced to acquire sophisticated feature representations of text images; The spatial and channel attentions are introduced to capture the local information and inter-channel interaction information of text images; At last, this paper designs a multi-scale residual attention module by skillfully fusing multi-scale learning and attention mechanisms. The experiments on TextZoom demonstrate that the model proposed increases scene text recognition's (ASTER) average recognition accuracy by 1.2% compared to text super-resolution network.

RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law (An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models)

  • 김남식;이지호;장승필
    • 한국지진공학회논문집
    • /
    • 제7권6호
    • /
    • pp.101-108
    • /
    • 2003
  • 실험장비의 용량 제약, 경제적인 이유 등으로 지진하중에 대한 구조물의 동적 거동을 연구할 경우, 보편적으로 축소모형이 많이 적용되고 있다. 그러나 구조물의 지진응답은 비탄성 거동을 나타내기 때문에 거동예측이 복잡함에도 불구하고, 축소모형의 지진실험 결과로부터 원형구조물의 지진응답을 유추하기 위한 상사법칙의 연구는 미비한 실정이다. RC구조물의 축소모형 제작 시 상사율이 커지면 상대적으로 부가질량이 증가하며, 또한 굵은 골재 크기의 영향으로 원형구조물과 축소모형의 제작에 동일한 재료를 사용하지 않는 것이 바람직하다. 따라서 동일한 재료를 사용하지 않을 경우, 상사법칙은 기하학적인 상사율과 재료적인 등가탄성계수비에 의존하게 된다. 본 연구에서는 원형구조물과 축소모형에 각각 적용되는 normal-concrete와 micro-concrete의 재료 비선형성을 파악하기 위해 압축강도시험을 수행하여, 재료의 거동구간을 등가의 다단계로 나누어 등가탄성계수비를 적용시킴으로써 지진손상의 정도를 고려할 수 있는 Equivalent multi-phase similitude law를 유도하였다. 이러한 상사법칙을 적용한 유사동적실험 알고리즘을 구축하여 수치해석적인 검증을 수행하여 유사동적실험의 적용성을 확인하였다.