• Title/Summary/Keyword: Multi-scale feature fusion

Search Result 26, Processing Time 0.023 seconds

AUTOMATIC ROAD NETWORK EXTRACTION. USING LIDAR RANGE AND INTENSITY DATA

  • Kim, Moon-Gie;Cho, Woo-Sug
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.79-82
    • /
    • 2005
  • Recently the necessity of road data is still being increased in industrial society, so there are many repairing and new constructions of roads at many areas. According to the development of government, city and region, the update and acquisition of road data for GIS (Geographical Information System) is very necessary. In this study, the fusion method with range data(3D Ground Coordinate System Data) and Intensity data in stand alone LiDAR data is used for road extraction and then digital image processing method is applicable. Up to date Intensity data of LiDAR is being studied. This study shows the possibility method for road extraction using Intensity data. Intensity and Range data are acquired at the same time. Therefore LiDAR does not have problems of multi-sensor data fusion method. Also the advantage of intensity data is already geocoded, same scale of real world and can make ortho-photo. Lastly, analysis of quantitative and quality is showed with extracted road image which compare with I: 1,000 digital map.

  • PDF

Integrated Automatic Pre-Processing for Change Detection Based on SURF Algorithm and Mask Filter (변화탐지를 위한 SURF 알고리즘과 마스크필터 기반 통합 자동 전처리)

  • Kim, Taeheon;Lee, Won Hee;Yeom, Junho;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Satellite imagery occurs geometric and radiometric errors due to external environmental factors at the acquired time, which in turn causes false-alarm in change detection. These errors should be eliminated by geometric and radiometric corrections. In this study, we propose a methodology that automatically and simultaneously performs geometric and radiometric corrections by using the SURF (Speeded-Up Robust Feature) algorithm and the mask filter. The MPs (Matching Points), which show invariant properties between multi-temporal imagery, extracted through the SURF algorithm are used for automatic geometric correction. Using the properties of the extracted MPs, PIFs (Pseudo Invariant Features) used for relative radiometric correction are selected. Subsequently, secondary PIFs are extracted by generated mask filters around the selected PIFs. After performing automatic using the extracted MPs, we could confirm that geometric and radiometric errors are eliminated as the result of performing the relative radiometric correction using PIFs in geo-rectified images.

DA-Res2Net: a novel Densely connected residual Attention network for image semantic segmentation

  • Zhao, Xiaopin;Liu, Weibin;Xing, Weiwei;Wei, Xiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4426-4442
    • /
    • 2020
  • Since scene segmentation is becoming a hot topic in the field of autonomous driving and medical image analysis, researchers are actively trying new methods to improve segmentation accuracy. At present, the main issues in image semantic segmentation are intra-class inconsistency and inter-class indistinction. From our analysis, the lack of global information as well as macroscopic discrimination on the object are the two main reasons. In this paper, we propose a Densely connected residual Attention network (DA-Res2Net) which consists of a dense residual network and channel attention guidance module to deal with these problems and improve the accuracy of image segmentation. Specifically, in order to make the extracted features equipped with stronger multi-scale characteristics, a densely connected residual network is proposed as a feature extractor. Furthermore, to improve the representativeness of each channel feature, we design a Channel-Attention-Guide module to make the model focusing on the high-level semantic features and low-level location features simultaneously. Experimental results show that the method achieves significant performance on various datasets. Compared to other state-of-the-art methods, the proposed method reaches the mean IOU accuracy of 83.2% on PASCAL VOC 2012 and 79.7% on Cityscapes dataset, respectively.

Human Action Recognition Via Multi-modality Information

  • Gao, Zan;Song, Jian-Ming;Zhang, Hua;Liu, An-An;Xue, Yan-Bing;Xu, Guang-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.739-748
    • /
    • 2014
  • In this paper, we propose pyramid appearance and global structure action descriptors on both RGB and depth motion history images and a model-free method for human action recognition. In proposed algorithm, we firstly construct motion history image for both RGB and depth channels, at the same time, depth information is employed to filter RGB information, after that, different action descriptors are extracted from depth and RGB MHIs to represent these actions, and then multimodality information collaborative representation and recognition model, in which multi-modality information are put into object function naturally, and information fusion and action recognition also be done together, is proposed to classify human actions. To demonstrate the superiority of the proposed method, we evaluate it on MSR Action3D and DHA datasets, the well-known dataset for human action recognition. Large scale experiment shows our descriptors are robust, stable and efficient, when comparing with the-state-of-the-art algorithms, the performances of our descriptors are better than that of them, further, the performance of combined descriptors is much better than just using sole descriptor. What is more, our proposed model outperforms the state-of-the-art methods on both MSR Action3D and DHA datasets.

Attention based Feature-Fusion Network for 3D Object Detection (3차원 객체 탐지를 위한 어텐션 기반 특징 융합 네트워크)

  • Sang-Hyun Ryoo;Dae-Yeol Kang;Seung-Jun Hwang;Sung-Jun Park;Joong-Hwan Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.190-196
    • /
    • 2023
  • Recently, following the development of LIDAR technology which can detect distance from the object, the interest for LIDAR based 3D object detection network is getting higher. Previous networks generate inaccurate localization results due to spatial information loss during voxelization and downsampling. In this study, we propose an attention-based convergence method and a camera-LIDAR convergence system to acquire high-level features and high positional accuracy. First, by introducing the attention method into the Voxel-RCNN structure, which is a grid-based 3D object detection network, the multi-scale sparse 3D convolution feature is effectively fused to improve the performance of 3D object detection. Additionally, we propose the late-fusion mechanism for fusing outcomes in 3D object detection network and 2D object detection network to delete false positive. Comparative experiments with existing algorithms are performed using the KITTI data set, which is widely used in the field of autonomous driving. The proposed method showed performance improvement in both 2D object detection on BEV and 3D object detection. In particular, the precision was improved by about 0.54% for the car moderate class compared to Voxel-RCNN.

Heterogeneous Face Recognition Using Texture feature descriptors (텍스처 기술자들을 이용한 이질적 얼굴 인식 시스템)

  • Bae, Han Byeol;Lee, Sangyoun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.208-214
    • /
    • 2021
  • Recently, much of the intelligent security scenario and criminal investigation demands for matching photo and non-photo. Existing face recognition system can not sufficiently guarantee these needs. In this paper, we propose an algorithm to improve the performance of heterogeneous face recognition systems by reducing the different modality between sketches and photos of the same person. The proposed algorithm extracts each image's texture features through texture descriptors (gray level co-occurrence matrix, multiscale local binary pattern), and based on this, generates a transformation matrix through eigenfeature regularization and extraction techniques. The score value calculated between the vectors generated in this way finally recognizes the identity of the sketch image through the score normalization methods.