• Title/Summary/Keyword: Multi-scale analysis

Search Result 787, Processing Time 0.028 seconds

LARGE EDDY SIMULATION OF FULLY TURBULENT WAVY CHANNEL FLOW USING RESIDUAL-BASED VARIATIONAL MULTI-SCALE METHOD (변분다중스케일법을 이용한 파형벽면이 있는 채널 난류 유동의 대와류모사)

  • Chang, Kyoung-Sik;Yoon, Bum-Sang;Lee, Joo-Sung
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • Turbulent flows with wavy wall are simulated using Residual-based Variational Multiscale Method (RB-VMS) which is proposed by Bazilves et al(2007) as new Large Eddy Simulation methodology. Incompressible Navier-Stokes equations are integrated using Isogeometric analysis which adopt the basis function as NURBS. The Reynolds number is 6760 based on the bulk velocity and averaged channel height. And the amplitude (${\alpha}/{\lambda}$) of wavy wall is 0.05. The computational domain is $2{\lambda}{\times}1.05{\lambda}{\times}{\lambda}$ in the streamwise, wall normal and spanwise direction. Mean quantities and turbulent statistics near wavy wall are compared with DNS results of Cherukat et al.(1998). The predicted results show good agreement with reference data.

Iris Recognition System using Multi-Resolution Frequency Analysis and Back-Propagation (다해상도 주파수 분할과 Back-Propagation을 이용한 홍채인식)

  • Park, Kyoung-Woo
    • Journal of Integrative Natural Science
    • /
    • v.1 no.3
    • /
    • pp.221-229
    • /
    • 2008
  • 본 논문에서는 기존의 개인 식별 방법의 한계를 해결하는 대안으로 떠오르고 있는 생체인식 기술 중 인식률이 뛰어나고 신뢰성 있는 홍채인식 시스템을 구현하고자 한다. 구현을 위하여 신호처리 분야에서 주로 사용되는 wavelet변환으로 계수 특징 값 추출을 하였으며, 인식률을 알아보기 위하여 신경망 기법을 이용하고자 한다. 그러나 신경망 기법에서 주로 사용되는 비선형 최적화기법인 Scale Conjugate Gradient는 최적화 문제점을 해결하기에는 수렴속도가 느리기 때문에 적합하지 않다. 따라서 본 논문에서는 기존 Scale Conjugate Gradient를 보완한 Levenberg-Marquardt Back-Propagation을 홍채인식에 적용하여 구현함으로써 인식율을 높이고자 한다. 적용한 알고리즘 구현으로 해의 수렴정도, 변수 벡터의 변화정도에 따라 크기를 적절히 변화시킴으로써 수렴속도를 개선하고, 효율성과 안정성을 동시에 얻을 수 있었다.

  • PDF

COMPONENT AND SYSTEM MULTI-SCALE DIRECT-COUPLED CODE IMPLEMENTATION USING CUPID AND MARS CODES (CUPID 코드와 MARS 코드를 이용한 기기/계통 다중스케일 연계 해석 코드 구현)

  • Park, I.K.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.89-97
    • /
    • 2016
  • In this study, direct code coupling, in which two codes share a single flow field, was conducted using 3-dimensional high resolution thermal hydraulics code, CUPID and 1-dimensional system analysis code, MARS. This approach provide the merit to use versatile capability of MARS for nuclear power plants and 3-dimensional T/H analysis capability of CUPID. Numerical Method to directly couple CUPID and MARS was described in this paper. The straight flow and manometer flow oscillation were calculated to verify conservation of coupled CUPID/MARS code in mass, momentum, and energy. This verification calculations indicates that the CUPID/MARS is coupled appropriately in numerical aspect and the coupled code can be applied to nuclear reactor thermal hydraulics after validation against integral transient experiments.

Modal Analysis of Large Scale Multi-Machine Power System using Rayleigh Quotient and Deflation (Rayleigh Quotient와 Deflation을 이용한 대형다기(多機)전력계통의 고유치 해석)

  • Shim, Kwan-Shik;Nam, Hae-Kon
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.76-78
    • /
    • 1993
  • This paper describes an efficient method of computing any desired number of the most unstable eigenvalues and eigenvectors of a large scale multi-machine power system. Approximate eigenvalues obtained by Hessenberg process are refined using Rayleigh quotient iteration with cubic convergence property. If further eigenvalues and eigenvectors are needed, the procedure described above are repeated with deflation. The proposed algorithm can cover all the model types of synchronous machines, exciters, speed governing system and PSS defined in AESOPS. The proposed algorithm applied to New England test system with 10 machines and 39 buses produced the results same with AESOPS in faster computation time. Also eigenvectors computed in Rayleigh quotient iteration makes it possible to make eigen-analysis for improving unstable modes.

  • PDF

Iris Recognition using Multi-Resolution Frequency Analysis and Levenberg-Marquardt Back-Propagation

  • Jeong Yu-Jeong;Choi Gwang-Mi
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.177-181
    • /
    • 2004
  • In this paper, we suggest an Iris recognition system with an excellent recognition rate and confidence as an alternative biometric recognition technique that solves the limit in an existing individual discrimination. For its implementation, we extracted coefficients feature values with the wavelet transformation mainly used in the signal processing, and we used neural network to see a recognition rate. However, Scale Conjugate Gradient of nonlinear optimum method mainly used in neural network is not suitable to solve the optimum problem for its slow velocity of convergence. So we intended to enhance the recognition rate by using Levenberg-Marquardt Back-propagation which supplements existing Scale Conjugate Gradient for an implementation of the iris recognition system. We improved convergence velocity, efficiency, and stability by changing properly the size according to both convergence rate of solution and variation rate of variable vector with the implementation of an applied algorithm.

Productivity Analysis for Multi-Wells Depressurization of Gas Hydrate Bearing Sediments in Ulleung Basin, East Sea of Korea (동해 울릉분지 가스하이드레이트 퇴적층 내 다중정 감압에 따른 생산성 분석)

  • Moon, Seo-Yoon;Shin, Hyo-Jin;Lim, Jong-Se
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.295-306
    • /
    • 2021
  • A field scale productivity analysis is required for the development of gas hydrate in marine sedimentary layers to verify the field applicability of production techniques and to improve productivity. In this study, the productivity resulting from the application of depressurization using multi-wells for the development of gas hydrate in the Ulleung Basin, East Sea of Korea, was determined. A numerical analysis model reflecting the conditions of candidate sites for the Ulleung Basin was constructed, and the productivity and dissociation behavior were comparatively analyzed. The pressure propagation and gas hydrate dissociation region by the multi-wells were wider and the productivity was higher than that of a single well. Different depressurization effects according to the spacing of multi-wells affected productivity. The results provide basic data for productivity analysis when establishing a field test production plan for the Ulleung Basin.

Application of CUPID for subchannel-scale thermal-hydraulic analysis of pressurized water reactor core under single-phase conditions

  • Yoon, Seok Jong;Kim, Seul Been;Park, Goon Cherl;Yoon, Han Young;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.54-67
    • /
    • 2018
  • There have been recent efforts to establish methods for high-fidelity and multi-physics simulation with coupled thermal-hydraulic (T/H) and neutronics codes for the entire core of a light water reactor under accident conditions. Considering the computing power necessary for a pin-by-pin analysis of the entire core, subchannel-scale T/H analysis is considered appropriate to achieve acceptable accuracy in an optimal computational time. In the present study, the applicability of in-house code CUPID of the Korea Atomic Energy Research Institute was extended to the subchannel-scale T/H analysis. CUPID is a component-scale T/H analysis code, which uses three-dimensional two-fluid models with various closure models and incorporates a highly parallelized numerical solver. In this study, key models required for a subchannel-scale T/H analysis were implemented in CUPID. Afterward, the code was validated against four subchannel experiments under unheated and heated single-phase incompressible flow conditions. Thereafter, a subchannel-scale T/H analysis of the entire core for an Advanced Power Reactor 1400 reactor core was carried out. For the high-fidelity simulation, detailed geometrical features and individual rod power distributions were considered in this demonstration. In this study, CUPID shows its capability of reproducing key phenomena in a subchannel and dealing with the subchannel-scale whole core T/H analysis.

Modeling of a Timing-Belt Drive System Used in a Large-Scale Panel-Handling Robot (대형 패널 이송 로봇에 사용되는 타이밍벨트 구동계의 모델링)

  • Jo, Eunim;Rhim, Sungsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.915-921
    • /
    • 2013
  • Most of large scale solar panel handling robots adopt the timing-belt drive system for its driveline because of the simplicity and the easiness of implementation. The vibration caused by the flexure of the timing belt would increase as the size and the weight of the panel that the robot handles increase and the vibration would deteriorate the precision and/or productivity of the whole robot system. For the development of a proper control system and for the improvement of the design of the robot it is important to estimate the oscillatory response of the robot system including the flexible drive system properly. In this paper a flexible multi-body dynamics model of a large-scale solar-panel-handling robot with the flexible timing-belt drive system is developed using a generic multi-body dynamics analysis program, RecurDyn.

A Hybrid Approach Based on Multi-Criteria Satisfaction Analysis (MUSA) and a Network Data Envelopment Analysis (NDEA) to Evaluate Efficiency of Customer Services in Bank Branches

  • Khalili-Damghani, Kaveh;Taghavi-Fard, Mohammad;Karbaschi, Kiaras
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.347-371
    • /
    • 2015
  • A hybrid procedure based on multi-Criteria Satisfaction Analysis (MUSA) and a Network Data Envelopment Analysis (NDEA) is proposed to evaluate the relative efficiency of customer services in bank branches. First, a three-stage process including sub-processes such as customer expectations, customer satisfaction, and customer loyalty, is defined to model the banking customer services. Then, fulfillment of customer expectations, customer loyalty level, and the customer satisfaction degree are measured and quantified through a multi-dimensional questionnaire based on customers' perceptions analysis and MUSA method, respectively. The customer services scores and the other criteria such as mean of employee evaluation score, operation costs, assets, deposits, loans, number of accounts are considered in network three-stage DEA model. The proposed NDEA model is formed based on multipliers perspective, output-oriented, and constant return to scale assumptions. The proposed NDEA model quantifies and assesses the total efficiency of main process and assigns the efficiency to customer expectations, customer satisfactions, and customer loyalties sub-processes in bank branches. The whole procedure is applied on 30 bank branches in IRAN. The proposed approach can be used in other organizations such as airports, airline agencies, urban transportation systems, railway organizations, chain stores, chain restaurants, public libraries, and entertainment centers.

Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle

  • Tayeb, Tayeb Si;Zidour, Mohamed;Bensattalah, Tayeb;Heireche, Houari;Benahmed, Abdelillah;Bedia, E.A. Adda
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.135-148
    • /
    • 2020
  • The incorporation of carbon nanotubes in a polymer matrix makes it possible to obtain nanocomposite materials with exceptional properties. It's in this scientific background that this work was based. There are several theories that deal with the behavior of plates, in this research based on the Mindlin-Reissner theory that takes into account the transversal shear effect, for analysis of the critical buckling load of a reinforced polymer plate with parabolic distribution of carbon nanotubes. The equations of the model are derived and the critical loads of linear and parabolic distribution of carbon nanotubes are obtained. With different disposition of nanotubes of carbon in the polymer matrix, the effects of different parameters such as the volume fractions, the plate geometric ratios and the number of modes on the critical load buckling are analysed and discussed. The results show that the critical buckling load of parabolic distribution is larger than the linear distribution. This variation is attributed to the concentration of reinforcement (CNTs) at the top and bottom faces for the X-CNT type which make the plate more rigid against buckling.