• 제목/요약/키워드: Multi-satellite Data

검색결과 557건 처리시간 0.027초

ACCURATE ESTIMATION OF GLOBAL LATENT HEAT FLUX USING MULTI-SATELLITE DATA

  • Tomita Hiroyuki;Kubota Masahisa
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.14-17
    • /
    • 2005
  • Global latent heat flux data sets are crucial for many studies such as those related to air-sea interaction and climate variation. Currently, various global latent heat flux data sets are constructed using satellite data. Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO) includes one of the satellite-derived global latent heat flux data (Kubota et aI., 2000). In this study, we review future development of J-OFURO global latent heat flux data set. In particular, we investigate usage of multi-satellite data for estimating accurate global latent heat flux. Accurate estimation of surface wind speeds over the global ocean is one of key factors for the improved estimation of global latent heat flux. First, we demonstrate improvement of daily wind speed estimation using multi-satellites data from microwave radiometers and scatterometers such as DMSP/SSMI, ERS/AMI, QuikSCAT/SeaWinds, AqualAMSR-E, ADEOS2/AMSR etc. Next, we demonstrate improvement of global latent heat flux estimation using the wind speed data derived from multi-satellite data.

  • PDF

COMPOUNDED METHOD FOR LAND COVERING CLASSIFICATION BASED ON MULTI-RESOLUTION SATELLITE DATA

  • HE WENJU;QIN HUA;SUN WEIDONG
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.116-119
    • /
    • 2005
  • As to the synthetical estimation of land covering parameters or the compounded land covering classification for multi-resolution satellite data, former researches mainly adopted linear or nonlinear regression models to describe the regression relationship of land covering parameters caused by the degradation of spatial resolution, in order to improve the retrieval accuracy of global land covering parameters based on 1;he lower resolution satellite data. However, these methods can't authentically represent the complementary characteristics of spatial resolutions among different satellite data at arithmetic level. To resolve the problem above, a new compounded land covering classification method at arithmetic level for multi-resolution satellite data is proposed in this .paper. Firstly, on the basis of unsupervised clustering analysis of the higher resolution satellite data, the likelihood distribution scatterplot of each cover type is obtained according to multiple-to-single spatial correspondence between the higher and lower resolution satellite data in some local test regions, then Parzen window approach is adopted to derive the real likelihood functions from the scatterplots, and finally the likelihood functions are extended from the local test regions to the full covering area of the lower resolution satellite data and the global covering area of the lower resolution satellite is classified under the maximum likelihood rule. Some experimental results indicate that this proposed compounded method can improve the classification accuracy of large-scale lower resolution satellite data with the support of some local-area higher resolution satellite data.

  • PDF

다중시기 위성영상의 무감독분류에 의한 갯벌의 입자 분포도 (Particulate Distribution Map of Tidal Flat using Unsupervised Classification of Multi-Temporary Satellite Data)

  • 정종철
    • 대한원격탐사학회지
    • /
    • 제18권2호
    • /
    • pp.71-79
    • /
    • 2002
  • 본 연구는 현장조사에서 얻어진 갯벌의 퇴적물 입자조성과 동일시기의 위성영상에서 추출된 반사치를 이용하여 함평만 갯벌의 입자분포도를 제시하였다. Landsat TM 자료에서 추출된 갯벌 입자조성에 따른 스팩트럼이 분석되었고, 7개의 위성영상은 ISODATA 와 K-MEANS 방법으로 분류되었다. 무감독분류된 결과는 현장관측치에 의해 분류 정확도가 평가되었으며, ISODATA와 K-MEANS 방법의 분류 정확도는 84.3%와 85.7%이다. 다중시기 위성영상 분류 결과를 검증하기 위해 현장조사 자료에 의해 분류된 1999년 5월 TM 영상을 참조자료로 하여 다중시기의 영상분류 결과를 비교하였다.

Urban Spatial Analysis using Multi-temporal KOMPSAT-1 EOC Imagery

  • Kim Youn-Soo;Jeun Gab-Ho;Lee Kwang-Jae;Kim Byung-Kyo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.515-517
    • /
    • 2004
  • Although sustainable development of a city should in theory be based on updated spatial information like land cover/use changes, in practice there are no effective tools to get such information. However the development of satellite and sensor technologies has increased the supply of high resolution satellite data, allowing cost-effective, multi-temporal monitoring. Especially KOMPSAT-1(KOrea Multi-Purpose SATellite) acquired a large number of images of the whole Korean peninsula and covering some large cities a number of times. In this study land-use patterns and trends of Daejeon from the year 2000 to the year 2003 will be considered using land use maps which are generated by manual interpretation of multi-temporal KOMPSAT EOC imagery and to show the possibility of using high resolution satellite remote sensing data for urban analysis.

  • PDF

GPS Data Application of the KOMPSAT-2

  • Chung, Dae-Won;Kwon, Ki-Ho;Lee, Sang-Jeong
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.337-342
    • /
    • 2006
  • The use of GPS receiver at outer space becomes common in low earth orbit. The KOrea Multi-Purpose SATellite-1 (KOMPSAT-1) which was launched in December 1999 has used GPS receiver's navigation solution to perform the Orbit Determination (OD) in the ground. At the circumstance of using only one ground station, the Orbit Determination using GPS receiver is good method. Because the accuracy of navigation solution acquiring directly from GPS receiver is not enough in satellite application such as map generation, post-processing concepts such as the Precise Orbit Determination (POD) are applied to satellite data processing to improve satellite position accuracy. The POD uses GPS receiver's raw measurement data instead of GPS receiver's navigation solution. The KOrea Multi- Purpose SATellite-2 (KOMPSAT-2) system newly uses the POD technique for large scale map generation. The satellite was launched in the end of July 2006. The satellite sends high resolution images in panchromatic band and multi-spectral bands to the ground. The satellite system uses GPS receivers as source of time synchronization and command reference in the satellite, provider of navigation solution for the OD, and provider of raw measurement data for the POD. In this paper, mechanical configuration and operations of the GPS receiver will be presented. The GPS data characteristics of the satellite such as time synchronization, command reference, the OD using GPS receiver's navigation solution, and the POD using GPS receiver's raw measurement data will be presented and analyzed. The enhancement of performance compared with it of the previous satellite will also be analyzed.

  • PDF

Overview of Chlorophyll-a Concentration Retrieval Algorithms from Multi-Satellite Data

  • Park, Ji-Eun;Park, Kyung-Ae;Park, Young-Je;Han, Hee-Jeong
    • 한국지구과학회지
    • /
    • 제40권4호
    • /
    • pp.315-328
    • /
    • 2019
  • Since the Coastal Zone Color Scanner (CZCS)/Nimbus-7 was launched in 1978, a variety of studies have been conducted to retrieve ocean color variables from multi-satellites. Several algorithms and formulations have been suggested for estimating ocean color variables based on multi band data at different wavelengths. Chlorophyll-a (chl-a) concentration is one of the most important variables to understand low-level ecosystem in the ocean. To retrieve chl-a concentrations from the satellite observations, an appropriate algorithm depending on water properties is required for each satellite sensor. Most operational empirical algorithms in the global ocean have been developed based on the band-ratio approach, which has the disadvantage of being more adapted to the open ocean than to coastal areas. Alternative algorithms, including the semi-analytical approach, may complement the limits of band-ratio algorithms. As more sensors are planned by various space agencies to monitor the ocean surface, it is expected that continuous monitoring of oceanic ecosystems and environments should be conducted to contribute to the understanding of the oceanic biosphere and the impact of climate change. This study presents an overview of the past and present algorithms for the estimation of chl-a concentration based on multi-satellite data and also presents the prospects for ongoing and upcoming ocean color satellites.

THE RELATION BETWEEN HPA AND COMS MULTI-CARRIER

  • Park Durk-Jong;Yang Hyung-Mo;Hyun Dae-Wan;Ahn Sang-Il;Kim Eun-Kyu
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.564-566
    • /
    • 2005
  • The relation between HPA (High Power Amplifier) and COMS (Communication Ocean Meteorological Satellite) multi-carrier is analyzed in this paper. MODAC (Meteorological and Ocean Data Application Center) has a primary mission to transmit processed data, HRIT (High Rate Information Transmission) and LRIT (Low Rate Information Transmission), which is normalized and calibrated by pre-processing. It is also replaced with the SOC (Satellite Operation Center) in emergency case and can transmit the command and ranging tones for operation of COMS. From the result of simulation with modelled HPA, it is found that the multi-carrier in one HPA can give rise to an inter-modulation which makes harmonic and spurious elements increase in-band. Under the environment of these increased parasitic elements, the degradation of multi-carrier's quality is estimated from the ratio of the amount of noise to total output power of HPA.

  • PDF

Multi-GNSS Standard Point Positioning using GPS, GLONASS, BeiDou and QZSS Measurements Recorded at MKPO Reference Station in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Cho, Jung Ho;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권4호
    • /
    • pp.205-211
    • /
    • 2015
  • The Global Navigation Satellite System (GNSS) is undergoing dramatic changes. Nowadays, much more satellites are transmitting navigation data at more frequencies. A multi-GNSS analysis is performed to improve the positioning accuracy by processing combined observations from different GNSS. The multi-GNSS technique can improve significantly the positioning accuracy. In this paper, we present a combined Global Positioning System (GPS), the GLObal NAvigation Satellite System (GLONASS), the China Satellite Navigation System (BeiDou), and the Quasi-Zenith Satellite System (QZSS) standard point positioning (SPP) method to exploit all currently available GNSS observations at Mokpo (MKPO) station in South Korea. We also investigate the multi-GNSS data recorded at MKPO reference station. The positioning accuracy is compared with several combinations of the satellite systems. Because of the different frequencies and signal structure of the different GNSS, intersystem biases (ISB) parameters for code observations have to be estimated together with receiver clocks in multi-GNSS SPP. We also present GPS/GLONASS and GPS/BeiDou ISB values estimated by the daily average.

THE IMPLEMENTATION METHOD AND TEST OF TELEMETRY TREND ANALYSIS IN KOMPSAT-2

  • Kim Myungja;Jung Won-Chan;Kim Jae-Hoon
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.235-238
    • /
    • 2004
  • In this paper, we will present the implementation method of telemetry trend analysis in KOMPSAT-2 (KOrea Multi Purpose SATellite II), and then we will show the test result of trend analysis with telemetry data. Trend Analysis function is one of the module of Satellite Operations Subsystem and that analyzes the telemetry data of satellite state of health and telemetry trend for operation support. With this system many clients can analyze telemetry data simultaneously.

  • PDF

KOMPSAT Data Processing System: Preliminary Acceptance Test Results

  • Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.331-336
    • /
    • 1999
  • The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the Korea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed and archived. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.

  • PDF