• Title/Summary/Keyword: Multi-satellite

Search Result 1,129, Processing Time 0.025 seconds

A Routing Scheme for Multi-Classes in Multi-hop LEO Satellite Networks with Inter-Satellite Links (위성간 링크를 가지는 다중 홉 저궤도 위성망에서 멀티 클래스 지원을 위한 경로 배정 기법)

  • Lee, Bong-Ju;Kim, Young-Chon
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.80-87
    • /
    • 2003
  • This paper proposes a routing scheme for multi-hop LEO satellite networks with inter-satellite links aiming for reducing the number of link handovers while keeping the efficient use of network resource. The proposed routing scheme controls the link handovers by taking account of the deterministic LEO satellite system dynamics, geographical location of a ground terminal and statistic information of call duration. The performance of the proposed routing scheme has been evaluated and compared with previous routing schemes in terms of average number of link handovers during a call, the call blocking and dropping probability, and the network utilization.

  • PDF

Multi-GNSS Standard Point Positioning using GPS, GLONASS, BeiDou and QZSS Measurements Recorded at MKPO Reference Station in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Cho, Jung Ho;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.205-211
    • /
    • 2015
  • The Global Navigation Satellite System (GNSS) is undergoing dramatic changes. Nowadays, much more satellites are transmitting navigation data at more frequencies. A multi-GNSS analysis is performed to improve the positioning accuracy by processing combined observations from different GNSS. The multi-GNSS technique can improve significantly the positioning accuracy. In this paper, we present a combined Global Positioning System (GPS), the GLObal NAvigation Satellite System (GLONASS), the China Satellite Navigation System (BeiDou), and the Quasi-Zenith Satellite System (QZSS) standard point positioning (SPP) method to exploit all currently available GNSS observations at Mokpo (MKPO) station in South Korea. We also investigate the multi-GNSS data recorded at MKPO reference station. The positioning accuracy is compared with several combinations of the satellite systems. Because of the different frequencies and signal structure of the different GNSS, intersystem biases (ISB) parameters for code observations have to be estimated together with receiver clocks in multi-GNSS SPP. We also present GPS/GLONASS and GPS/BeiDou ISB values estimated by the daily average.

Design and Performance Evaluation of OBP Satellite B-ISDN Transport Network Architecture (OBP 탑재 n이성 B-ISDN 중계망 구조 설계 및 성능 평가)

  • Park, Seok-Cheon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.901-908
    • /
    • 2000
  • Satellite communication in the 21 century's high tech information world is developing rapidly, marked by high levels of applications and functions. For example, satellite communication can process and switch the speed of the service provided by a broad and vast digital multimedia system such as a long-distance all between nations or broadcasting transfer service, which is supplied by a contemporary satellite system. So, it bring about problems which lack of satellite orbit and gibes out frequency resource by increment of satellite universally. To support this, an OBP satellite system is need, which includes an on-board IF/RF switch, baseband signal processing, multi-beam antenna technology, as well as a simple transponder system. In this paper, we have outlined the next generation of satellite communication; satellite OBP transport network architecture, which offers multimedia service and applied frequency reuse method for multi-spot beam. The satellite B-ISDN transport network architecture is also analyzed.

  • PDF

Particulate Distribution Map of Tidal Flat using Unsupervised Classification of Multi-Temporary Satellite Data (다중시기 위성영상의 무감독분류에 의한 갯벌의 입자 분포도)

  • 정종철
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.71-79
    • /
    • 2002
  • This research presents particulate distribution map of tidal flats of Hampyung bay using reflectance which extracted from satellite data and field survey data during same periods. The spectrum of particulate composition obtained from Landsat TM data was analysed and 7 scenes of satellite image were classified with ISODATA and K-MEANS methods. The results of unsupervised classification were estimated with in-situ data. The classification accuracy of ISODATA and K-MAMS methods were 84.3% and 85.7%. For validation of classified results of multi-temporal satellite images, TM image of May 1999(reference data), which was classified with field survey data was compared with classified results of multi-temporary satellite data.

Overview of Chlorophyll-a Concentration Retrieval Algorithms from Multi-Satellite Data

  • Park, Ji-Eun;Park, Kyung-Ae;Park, Young-Je;Han, Hee-Jeong
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.315-328
    • /
    • 2019
  • Since the Coastal Zone Color Scanner (CZCS)/Nimbus-7 was launched in 1978, a variety of studies have been conducted to retrieve ocean color variables from multi-satellites. Several algorithms and formulations have been suggested for estimating ocean color variables based on multi band data at different wavelengths. Chlorophyll-a (chl-a) concentration is one of the most important variables to understand low-level ecosystem in the ocean. To retrieve chl-a concentrations from the satellite observations, an appropriate algorithm depending on water properties is required for each satellite sensor. Most operational empirical algorithms in the global ocean have been developed based on the band-ratio approach, which has the disadvantage of being more adapted to the open ocean than to coastal areas. Alternative algorithms, including the semi-analytical approach, may complement the limits of band-ratio algorithms. As more sensors are planned by various space agencies to monitor the ocean surface, it is expected that continuous monitoring of oceanic ecosystems and environments should be conducted to contribute to the understanding of the oceanic biosphere and the impact of climate change. This study presents an overview of the past and present algorithms for the estimation of chl-a concentration based on multi-satellite data and also presents the prospects for ongoing and upcoming ocean color satellites.

A Study on Effective Satellite Selection Method for Multi-Constellation GNSS

  • Taek Geun, Lee;Yu Dam, Lee;Hyung Keun, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • In this paper, we propose an efficient satellite selection method for multi-constellation GNSS. The number of visible satellites has increased dramatically recently due to multi-constellation GNSS. By the increased availability, the overall GNSS performance can be improved. Whereas, due to the increase of the number of visible satellites, the computational burden in implementing advanced processing such as integer ambiguity resolution and fault detection can be increased considerably. As widely known, the optimal satellite selection method requires very large computational burden and its real-time implementation is practically impossible. To reduce computational burden, several sub-optimal but efficient satellite selection methods have been proposed recently. However, these methods are prone to the local optimum problem and do not fully utilize the information redundancy between different constellation systems. To solve this problem, the proposed method utilizes the inter-system biases and geometric assignments. As a result, the proposed method can be implemented in real-time, avoids the local optimum problem, and does not exclude any single-satellite constellation. The performance of the proposed method is compared with the optimal method and two popular sub-optimal methods by a simulation and an experiment.

RF COMPATIBILITY TEST BETWEEN KOMPSAT AND TTC STATION

  • Ahn, Sang-Il;Choi, Hae-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 1999
  • Results of RF compatibility test between KOMPSAT(Korea Multi-Purpose SATellite) and TTC(Tracking, Telemetry, and Command) station are described. S/C(Spacecreft) RF Test, telemetry test, command test, ranging test, and tracking receiver test were performed with respect to pass/fail criteria. To provide physical RF interface between KOMPSAT and TTC equipment, direct low cable and antenna-to-antenna interface were implemented. Through RF compatibility test, it was fully demonstrated that KOMPSAT and TTC equipment are functionally workable.

  • PDF

Interference-Limited Dynamic Resource Management for an Integrated Satellite/Terrestrial System

  • Park, Unhee;Kim, Hee Wook;Oh, Dae Sub;Ku, Bon-Jun
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.519-527
    • /
    • 2014
  • An integrated multi-beam satellite and multi-cell terrestrial system is an attractive means for highly efficient communication due to the fact that the two components (satellite and terrestrial) make the most of each other's resources. In this paper, a terrestrial component reuses a satellite's resources under the control of the satellite's network management system. This allows the resource allocation for the satellite and terrestrial components to be coordinated to optimize spectral efficiency and increase overall system capacity. In such a system, the satellite resources reused in the terrestrial component may bring about severe interference, which is one of the main factors affecting system capacity. Under this consideration, the objective of this paper is to achieve an optimized resource allocation in both components in such a way as to minimize any resulting inter-component interference. The objective of the proposed scheme is to mitigate this inter-component interference by optimizing the total transmission power - the result of which can lead to an increase in capacity. The simulation results in this paper illustrate that the proposed scheme affords a more energy-efficient system to be implemented, compared to a conventional power management scheme, by allocating the bandwidth uniformly regardless of the amount of interference or traffic demand.

Optimization of input carrier powers considering satellite link environment in the multi-level SCPC systems (Multi-level SCPC 시스템에서 링크환경을 고려한 중계기 입력반송파 전력의 최적화)

  • 김병균;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1240-1255
    • /
    • 1996
  • This paper suggests power optimization technique in multi-level SCPC system as a method for efficient utilization of limited satellite power. The power optimization is realized by optimal assignment of satellite input carrier powers considering interference and noise generated in up-link and down-link. The Fletcher-Powell algorithm searching minimum(or maximum) point using gradient information is used to detemine the optimal input carrier powers. To apply Flectcher-Powell algorithm mathematical descriptions and their partial derivatives to interference and nose are presented. Because a target, which should be optimized, is satellite input carrier power, amplitude of each carrier group will be assumed to be an independent variable. The performance criterion for optimal power assignmentis classified into 4 categories with respect to CNR of destination receiver earth station to meet the requirement for various satellite link environment. Simulation results for two-level, four-level and six-level SCPC system are presented.

  • PDF

Dynamic power and bandwidth allocation for DVB-based LEO satellite systems

  • Satya Chan;Gyuseong Jo;Sooyoung Kim;Daesub Oh;Bon-Jun Ku
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.955-965
    • /
    • 2022
  • A low Earth orbit (LEO) satellite constellation could be used to provide network coverage for the entire globe. This study considers multi-beam frequency reuse in LEO satellite systems. In such a system, the channel is time-varying due to the fast movement of the satellite. This study proposes an efficient power and bandwidth allocation method that employs two linear machine learning algorithms and take channel conditions and traffic demand (TD) as input. With the aid of a simple linear system, the proposed scheme allows for the optimum allocation of resources under dynamic channel and TD conditions. Additionally, efficient projection schemes are added to the proposed method so that the provided capacity is best approximated to TD when TD exceeds the maximum allowable system capacity. The simulation results show that the proposed method outperforms existing methods.