• 제목/요약/키워드: Multi-rotor

검색결과 240건 처리시간 0.026초

허브면 형상의 변경을 통한 초음속 압축단의 공력효율 개선 (Improvement of Aerodynamic Efficiency of Supersonic Stage by the Modification of Hub Flowpath Shape)

  • 박기철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.227-233
    • /
    • 2002
  • It is common for highly loaded supersonic stage to have very high relative inlet Mach number. To get this level of inlet Mach number, rotor blade outer diameter or rotational speed should be increased. In the case of commercial turbo-fan engine, it is preferred to make the rotor blade outer diameter large than increasing the rotational speed. But, for multi-stage fan of military engines, overall diameter is often restricted and they are apt to increase the rotational speed. With high rotational speed, relative inlet Mach number is likely to be well supersonic over the entire rotor blade span and the characteristic of the stage is affected with meridional shape of the stage, especially at near hub or tip. In this paper, the aerodynamic performance of two different hub surface shape is compared and it's merit and demerits were discussed.

  • PDF

이중운전조건을 고려한 외전형 SRM의 구동특성 (Drive Characteristics of Outer-rotor Type SRM Considering Dual Operating Modes)

  • 안진우
    • 전기학회논문지
    • /
    • 제63권7호
    • /
    • pp.903-909
    • /
    • 2014
  • As a direct drive type washing machine requires two operating modes, washing and spinning modes, a design of the motor with high efficiency in each mode is not applicable to a conventional procedure. To achieve the requirements, a multi-pole outer rotor type switched reluctance motors are considered. To select a suitable motor type for the application, a static toque is compared based on the FEM analysis. The selected type is obtained for high and wide toque than other types of the motor. Further, the pole shape and arc are optimized to meet the required torque and torque ripple. To verify the proposed structure, the prototype is designed and manufactured. And the simulation and experimental results verify the validity of the proposed structure.

수평축 조류발전 후류 특성 및 발전 효율 분석 (The Wake Characteristics of Tidal Current Power Turbine)

  • 조철희;이강희;이준호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.163.2-163.2
    • /
    • 2011
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Due to the high tidal range of up to 9.7m on the west coast of Korea, numerous tidal current projects are being planned and constructed. To extract a significant quantity of power, a tidal current farm with a multi-arrangement is necessary in the ocean. The rotor, which initially converts the energy, is a very important component because it affects the efficiency of the entire system, and its performance is determined by various design variables. The power generation is strongly dependent on the size of the rotor and the incoming flow velocity. However, the interactions between devices also contribute significantly to the total power capacity. Therefore, rotor performance considering the interaction problems needs to be investigated for generating maximum power in a specific field. This paper documents the characteristics of wake induced by horizontal axis tidal current power turbine.

  • PDF

복합배치 수평축 조류발전 로터의 간섭성능 고찰 (Interference Effects on the Performance of Multi-arrayed HAT TCP Devices)

  • 조철희;이강희;임진영;노유호
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.36-40
    • /
    • 2010
  • Tidal current power system is the energy converter which converts the kinetic energy of tidal stream into electric energy. The performance of the rotor which initially converts the energy is determined by various design factors and it should be optimized by the ocean environment of the field. Flow direction changes due to rise and fall of the tides, but horizontal axis turbine is very sensitive to direction of flow. To investigate the rotor performance considering the interaction problems with incidence angle of flow, series of experiments have been conducted. The results and findings are summarized in the paper.

MW 규모 풍력 터빈의 기계적 하중 특성 해석 및 제어 (Mechanical Loads Analysis and Control of a MW Wind Turbine)

  • 남윤수;최한순
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.26-33
    • /
    • 2010
  • A multi-MW wind turbine is a huge mechanical structure, of which the rotor diameter is more or less than 100 m. Rotor blades experience unsymmetric mechanical loads caused by the interaction of incoming wind with the tower and wind shear effect. These mechanical loads are transferred to the entire structure of the wind turbine and are known as the major reasons for shortening the life span of the wind turbine. Therefore, as the size of wind turbine gets bigger, the mitigation of mechanical loads becomes more important issue in wind turbine control system design. In this paper, a concept of an individual pitch control(IPC), which minimizes the mechanical loads of rotor blades, is introduced, and simulation results using IPC are discussed.

RK4 회전체 시스템의 이상상태 모델링 및 검증 (Abnormal Condition Modeling and Validation of RK4 Multi Axis Rotor System)

  • 권기범;한정삼;전병철;정준하;윤병동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.511-512
    • /
    • 2014
  • In this paper, the finite element modeling of the RK4 rotor kit system (RK4) and then transient analysis, and was compared with the actual experimental results. RK4 manufactured by General Electric for the purpose of education and research. It is modeled by using the ANSYS finite element analysis program commercially available. Considering the rotor abnormal conditions(disc unbalance and shaft rubbing) and the vibration response of the analytical model were compared with experimental results.

  • PDF

전기자전거용 BLDC 전동기 설계 및 제어기 개발 (Design of BLDC Motors for an Electric Bicycle and Development of their Controller)

  • 김상욱;김보열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.90-94
    • /
    • 2001
  • The aim of this paper is twofold: The one is to design BLDC motors for an electric bicycle and the other is to develop a controller of the BLDC motors. A new BLDC Motor has a permanent magnet rotor in which the magnetic arrangement is radial to the shaft and integral to the rotor laminations instead of mounted on the perimeter of the rotor. This technique concentrates flux, giving a higher flux density than a surface-mounted PM motor and has the increase of reluctance torque. The stator of BLDC motor has parallel winding instead of interconnected wye-connection winding, allowing multi-phase separate independent controllability. It gets much more high power than wye-connection at same low voltage. The proposed controller has a technique of exited with modulation(EWM) and one H-bridge and two photo sensors per phase. Experimental results show the performance of the proposed BLDC motors for an electric bicycle.

  • PDF

Axial flux BLDC 전동기의 토크특성개선에 관한 연구 (Analysis of characteristics of Multi-layer AFPM Motor)

  • 유현오;공정식;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.397-399
    • /
    • 1999
  • This paper deals with the torque characteristics of a AFPM motor excited by permanent magnets. According to relative angle difference of two rotor, torque characteristics are studied. According to varied angle of two rotor, torque ripple and, total torque of AFPM motor is different. For minimum torque ripple, angle of two rotor of AFPM motor are investigated. For this study, we used to Maxwell EM 3D program. A prototype AFPM motor have been assembled and driving power supply are made. Characteristics of magnetical and electrical characteristic are investigated.

  • PDF

고장 허용 유도형 위치 센서 설계 (Design of Fault-Tolerant Inductive Position Sensor)

  • 백승국;박병철;노명규
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.232-239
    • /
    • 2008
  • The position sensors used in a magnetic bearing system are desirable to provide some degree of fault-tolerance as the rotor position is necessary for the feedback control to overcome the open-loop instability. In this paper, we propose an inductive position sensor that can cope with a partial fault in the sensor. The sensor has multiple poles which can be combined to sense the in-plane motion of the rotor. When a high-frequency voltage signal drives each pole of the sensor, the resulting current in the sensor coil contains information regarding the rotor position. The signal processing circuit of the sensor extracts this position information. In this paper, we used the magnetic circuit model of the sensor that shows the analytical relationship between the sensor output and the rotor motion. The multi-polar structure of the sensor makes it possible to introduce redundancy which can be exploited for fault-tolerant operation. The proposed sensor is applied to a magnetically levitated turbo-molecular vacuum pump. Experimental results validate the fault-tolerance algorithm.

Waviness가 존재하며 볼의 원심력과 자이로스코픽 모멘트가 작용하는 볼베어링으로 지지된 5 자유도 회전계의 진동해석 (Vibration Analysis of 5-DOF Rotor System Supported by Two or More Ball Bearings Considering Centrifugal Force and Gyroscopic Moment of Ball)

  • 정성원;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.297-303
    • /
    • 2001
  • This research presents an analytical model to characterize the ball bearing vibration due to the waviness in a rigid rotor supported by multi-row ball bearings considering centrifugal force and gyroscopic moment of ball. The effects of centrifugal force and gyroscopic moment are introduced to the kinematic constraints and force equilibrium equations. The waviness of ball and races is modeled by the superposition of sinusoidal function and it is introduced to position vectors of race curvature center to use the Hertzian contact theory in order to calculate the elastic deflection and nonlinear contact force resulting from the waviness while the rotor has translational and angular motion. They can be determined by solving the nonlinear equations of motion with five degrees of freedom by using the Runge-Kutta-Fehlberg algorithm. The accuracy of this research is validated by comparing with the results of the prior researches. It characterizes the vibration frequencies resulting from the various kinds of waviness in rolling elements, the harmonic frequencies resulting from the nonlinear load-deflection characteristics of ball bearing resulting from the waviness interaction.

  • PDF