• Title/Summary/Keyword: Multi-reference signal

Search Result 114, Processing Time 0.019 seconds

Retrieval and Validation of Precipitable Water Vapor using GPS Datasets of Mobile Observation Vehicle on the Eastern Coast of Korea

  • Kim, Yoo-Jun;Kim, Seon-Jeong;Kim, Geon-Tae;Choi, Byoung-Choel;Shim, Jae-Kwan;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.365-382
    • /
    • 2016
  • The results from the Global Positioning System (GPS) measurements of the Mobile Observation Vehicle (MOVE) on the eastern coast of Korea have been compared with REFerence (REF) values from the fixed GPS sites to assess the performance of Precipitable Water Vapor (PWV) retrievals in a kinematic environment. MOVE-PWV retrievals had comparatively similar trends and fairly good agreements with REF-PWV with a Root-Mean-Square Error (RMSE) of 7.4 mm and $R^2$ of 0.61, indicating statistical significance with a p-value of 0.01. PWV retrievals from the June cases showed better agreement than those of the other month cases, with a mean bias of 2.1 mm and RMSE of 3.8 mm. We further investigated the relationships of the determinant factors of GPS signals with the PWV retrievals for detailed error analysis. As a result, both MultiPath (MP) errors of L1 and L2 pseudo-range had the best indices for the June cases, 0.75-0.99 m. We also found that both Position Dilution Of Precision (PDOP) and Signal to Noise Ratio (SNR) values in the June cases were better than those in other cases. That is, the analytical results of the key factors such as MP errors, PDOP, and SNR that can affect GPS signals should be considered for obtaining more stable performance. The data of MOVE can be used to provide water vapor information with high spatial and temporal resolutions in the case of dramatic changes of severe weather such as those frequently occurring in the Korean Peninsula.

Atrial Fibrillation Waveform Extraction Algorithm for Holter Systems (홀터 심전계를 위한 심방세동 신호 추출 알고리즘)

  • Lee, Jeon;Song, Mi-Hye;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.38-46
    • /
    • 2012
  • Atrial fibrillation is needed to be detected at paroxysmal stage and to be treated. But, paroxysmal atrial fibrillation ECG is hardly obtained with 12-lead electrocardiographs but Holter systems. Presently, the averaged beat subtraction(ABS) method is solely used to estimate atrial fibrillatory waves even with somewhat large residual error. As an alternative, in this study, we suggested an ESAF(event-synchronous adaptive filter) based algorithm, in which the AF ECG was treated as a primary input and event-synchronous impulse train(ESIT) as a reference. And, ESIT was generated so to be synchronized with the ventricular activity by detecting QRS complex. We tested proposed algorithm with simulated AF ECGs and real AF ECGs. As results, even with low computational cost, this ESAF based algorithm showed better performance than the ABS method and comparable performance to algorithm based on PCA(principal component analysis) or SVD(singular value decomposition). We also proposed an expanded version of ESAF for some AF ECGs with multi-morphologic ventricular activities and this also showed reasonable performance. Ultimately, with Holter systems including our proposed algorithm, atrial activity signal can be precisely estimated in real-time so that it will be possible to calculate atrial fibrillatory rate and to evaluate the effect of anti-arrhythmic drugs.

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

Development of an EEG Software for Two-Channel Cerebral Function Monitoring System (2채널 뇌기능 감시 시스템을 위한 뇌파 소프트웨어의 개발)

  • Kim, Dong-Jun;Yu, Seon-Guk;Kim, Seon-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 1999
  • This paper describes an EEG(electroencephalogram) software for two-channel cerebral function monitoring system to detect the cerebral ischemia. In the software, two-channel bipolar analog EEG signals are digitized and from the signals various EEG parameters are extracted and displayed on a monitor in real-time. Digitized EEG signal is transformed by FFT(Fast Fourier transform) and represented as CSA(compressed spectral array) and DSA(density spectral array). Additional 5 parameters, such as alpha ratio, percent delta, spectral edge frequency, total power, and difference in total power, are estimated using the FFT spectra. All of these are effectively merged in a monitor and displayed in real-time. Through animal experiments and clinical trials on men, the software is modified and enhanced. Since the software provides raw EEG, CSA, DSA, simultaneously with additional 5 parameters in a monitor, it is possible to observe patients multilaterally. For easy comparison of patient's status, reference patterns of CSA, DSA can be captured and displayed on top of the monitor. And user can mark events of surgical operation and patient's conditions on the software, this allow him jump to the points of events directly, when reviewing the recorded EEG file afterwards. Other functions, such as forward/backward jump, gain control, file management are equipped and these are operated by simple mouse click. Clinical tests in a university hospital show that the software responds accurately according to the conditions of patients and medical doctors can use the software easily.

  • PDF