• Title/Summary/Keyword: Multi-purpose Dam

Search Result 127, Processing Time 0.033 seconds

A Landscape Planning of Multi-purpose Dam in Hwabuk (화북 다목적댐 조경계획)

  • Ahn Gye-Dong;Kim Yong-Geun;Min Kwon-Sik;Kang Hyun-Kyung;Kwon Jeon-O;Shin Ji-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.1 s.114
    • /
    • pp.107-119
    • /
    • 2006
  • The Korea Water Resources Corporation(KOWACO) proposed bidding for an alternative design for Hwabuk Multi-purpose Dam in March of 2004. The site is located in Hakseong-ri, Goro-myeon, Gunwi-gun, Gyeongsangbuk-do and has adrainage area of $87.52km^2$. The purpose of this project is to establish an environmentally friendly plan for minimizing the damage that was caused by the construction of the Hwabuk Multi-purpose Dam. The design principle of KOWACO was the restoration of the natural environment, a harmonious landscape, and the creation of a space of regional and local culture. The basic concept of this project involves an ecological-restoration axis and a functional-connection axis. The site is divided into four spaces: (1) the space of memory and symbol, (2) the space of nature and ecology, (3) the space of regional and local culture, and (4) the space of the regional economy. There are four sub-spaces in the space of memory and symbol: the track forest, the time forest, the memory room, and the sun plaza. There are three sub-spaces in the space of nature and ecology: the habitat of aquatic birds, the wind forest, and the eco-corridor. There are five themed parks in the space of regional and local culture: the culture and relic room, the wildflower garden, the ecological pond, the insect observation park, and the pyogo maze. There are three areas in the space of the regional economy: the forest pension, the waterside pension, and the community center, as Dungdungi village was reorganized to serve as a lodging complex. These themed parks, working together, can offer an effective space for nature, culture, rest, and experience.

A Methodological Study on Ecological Economic Evaluation of a Multipurpose Dam Construction Using Emergy Concept (에머지(Emergy) 개념을 이용한 다목적댐 건설의 생태경제학적인 평가방법에 관한 연구)

  • Kang, Dee Seok;Park, Seok Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.2
    • /
    • pp.45-51
    • /
    • 1999
  • Emergy concept was used to evaluate the contributions of a dam construction to the real wealth of our economy. A dam that is proposed as a multi-purpose dam was used to illustrate emergy evaluation methodology. Models for emergy evaluation were constructed with energy systems language, a symbolic modeling language which presents network properties of systems holistically. Water supply was the most important contribution in terms of emergy, which reflects that the dam is proposed for stable water supply to a local region. Generation of electricity was the second in emergy benefits of the dam. Emergy costs were more evenly distributed among the costs which would occur as a result of the dam construction. Emergy yield ratio was 1.30 if sediments are not included, and 1.15 if sediments are included, which results in net yield in both cases. The ratio would, however, fall below 1.0 if rare species within the system boundary are lost as a result of the dam construction because of the high emergy value included in biotic species, which means that emergy costs will be greater than emergy benefits. This study illustrated a new methodology in environmental impact assessment to better manage our environments in an age of diminishing resources.

  • PDF

DISTRIBUTION OF ORGANIC MATTERS AND RELEASE CHARACTERISTICS IN DAM RESERVOIR

  • Lee, Yo-Sang;Kim, Woo-Gu;Koh, Deuk-Koo;Yang, Jae-Rheen
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.21-30
    • /
    • 2002
  • The inflow into a multi-purpose dam reservoir contains many suspended solids from the upper stream during the rainy season. Concentrations of SS increased to 73.3 mg/l and the TP measurement increased to 0.09 mg/l during the rainy season in 1999. It was discovered that particles less than $10\;\mu\textrm{m}$ in size composed about 50% of the total amount. Some of these particles reduce the reservoir capacity and have an impact on water. In this study, the sediment depth at Daecheong multi-purpose dam was examined. Piston coring was performed at 9 locations At Hoenam 1 out of 9 locations examined showed maximum depth, which was 90 cm and at Muneui 3 showed the minimum depth, which was 35 cm. At Hoenam, the release rate of TN was found to be $62.14~84.72\;mg/\textrm{m}^2{\cdot}day$ in 1998. However, it was found to considerably reduced to $23.20\;mg/\textrm{m}^2{\cdot}day$ in 2001. The release rate of TP was measured at $13.02~14.38\;mg/\textrm{m}^2$.day at 1998, and it was reduced to $6.93mg/\;mg/\textrm{m}^2{\cdot}day$ in 2001.

  • PDF

A STUDY ON THE SAFETY ANALYSIS OF ROCK FILL DAM (2) (필댐의 안정성 해석 연구 (II))

  • HoWoongShon;DaeKeunLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.189-207
    • /
    • 2003
  • The purpose of this paper is to analyze the behavior and to study the safety evaluation of the Unmun Dam located in Cheongdo-Gun of GyeongBuk Province, Korea. For this purpose, soil analyses including boring data, geophysical surveys and monitoring the buried geotechnical gauges, such as pore-pressure gauge, earth-pressure gauge, displacement gauge, multi-layer settlement gauge, leakage flow-meter, were conducted. In addition to these data, numerical analyses of behavior of dam were performed to predict and to compare the data which were obtained from the above methods. Since many defects, such as gravel and weathered rock blocks in the dam core, and lots of amounts of leakage, by boring analyses were found, reinforcement by compaction grouting system (CGS) has been conducted in some range of dam. Some geotechnical gauge data were also used to confirm the effects of reinforcement. Analyses of monitoring the data of geotechnical gauges buried in the dam, such as pore-pressure gauge, earth-pressure gauge, displacement gauge, multi-layer settlement gauge, and leakage flow-meter shows the load transfer of dam and the possibility of hydraulic fracturing. As a conclusion, some problems in the dam found. Especially, the dam near spillway shows the high possibility of leakage. It should be pointed out that only the left side of he dam has not a leakage problem. As a whole, the dam has problems of weakness, because of unsatisfactory construction. It is strongly recommended that highly intensive monitoring is required.

  • PDF

Assessing the Effect of Upstream Dam Outflows and River Water Uses on the Inflows to the Paldang Dam (상류 댐 방류량 및 하천수 사용량이 팔당댐 유입량에 미치는 영향 평가)

  • Kim, Chul Gyum;Kim, Nam Won;Lee, Jeong Eun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1017-1026
    • /
    • 2014
  • To investigate the effect of upstream dam operation and river water use on the downstream flows, SWAT-K watershed model was applied to the Paldang Dam watershed of the Han River basin. Analysis results from 2001 to 2009 showed that outflows from the multi-purpose dams such as the Soyanggang Dam and Chungju Dam much have a strong influence on the downstream flows during both the low- and high-flow seasons. This resulted an increase of low-flow at the Paldang Dam, the end of Pukhangang, and the Yangpyeong stage station by $100.57m^3/s$, $33.01m^3/s$, and $49.66m^3/s$, respectively. Whereas, the impact of river water use was hardly found in the Pukhangang, and also was not significant in the (Nam)hangang. Therefore, the effect of small dam such as the Hoengseong Dam or river water use would be able be excluded for long-term runoff analysis. But, in the case of the areas with a large amount of water use, a sufficient information such water-intake and water movement also must be taken into account like this study.

Hydrologic variability in the Sumjin river dam basin according to typhoon genesis pattern (한반도 영향 태풍의 경로 유형에 따른 섬진강댐 유역의 수문변동 특성분석)

  • Kang, Ho-Yeong;Choi, Ji-Hyeok;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.4
    • /
    • pp.233-239
    • /
    • 2017
  • In this study, we analyzed typhoon affecting Korean Peninsula and runoff characteristic changes according to the typhoon based on Sumjin river dam, a representative multi-purpose dam. We quantified typhoon flow by applying the typhoon domain, and will provide base data for climate change adaptation and counterstrategy through correlation analysis of the change of typhoon statistical data and Indicators of Hydrologic Alterations (IHA). Korean Peninsula impact typhoon has a great effect on the scale of peak flow and the change of occurrence time. The occurrence frequency and duration of the peak flow were analyzed to be relatively unrelated to the typhoon affected by the Korean peninsula. These changes were also confirmed in the correlation analysis results. Correlation coefficient between the peak flow (0.41) and peak flow occurrence time (correlation coefficient = 0.83) was positively correlated with the Korean peninsula influenced typhoon.

Analysis of Korean TMLD Design Flow Variation due to Large Dam Effluents and Water Use Scenarios

  • Shin, Hyun-Suk;Kang, Doo-Kee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.74-83
    • /
    • 2007
  • The goal of this study is to establish an integrated watershed hydrologic model for the whole Nakdong River basin whose area is an approximately 24,000 km2. Including a number of watershed elements such as rainfall, runoff, water use, and so on, the proposed model is based on SWAT model, and is used to improve the flow duration curve estimation of ungauged watersheds for Korean Total Maximum Daily Load (TMDL). The model is also used to recognize quantitatively the river flow variation due to water use elements and large dam effluents in the whole watershed. The established combined watershed hydrologic model, SWAT-Nakdong, is used to evaluate the quantified influences of artificial water balance elements, such as a dam and water use in the watershed. We apply two water balance scenarios in this study: the dam scenario considering effluent conditions of 4 large multi-purpose dams, Andong dam, Imha dam, Namgang dam, and Habcheon dam, and the water use scenario considering a water use for stream line and the effluent from a treatment plant. The two scenarios are used to investigate the impacts on TMDL design flow and flow duration of particular locations in Nakdong River main stream. The results from this study will provide the basic guideline for the natural flow restoration in Nakdong River.

  • PDF