• Title/Summary/Keyword: Multi-process

Search Result 5,673, Processing Time 0.029 seconds

A Study on Real-Time Planning System in Multi Progress Planning Environment (다중 공정 계획 환경하의 실시간 계획 반영 시스템에 관한 연구)

  • Lee, Dae-Hyung;Kim, Young-Sup;Kim, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.547-553
    • /
    • 2008
  • Multi Progress Planning System problem in a multi-stage manufacturing system have a complexity and peculiarity different from other kinds of production system. World leading company has invested much cost and effort into a Real-Time Planning System and intelligent manufacturing field to obtain their own competitiveness. Especially Real-Time Planning System for ship production process as a part of intelligence for a shipyard. Real-Time Planning System, simulation based system, or virtual manufacturing system is an approach to achieve a such goal. It is expected that the Real-Time Planning System will contribute to the improvement of the productivity in working process at a shipyard. Also, This Real-Time Planning System will optimize the entire shipbuilding process in a multi progress planning environment for the delivery.

A Study of Forming Analysis by using Dynamic-explicit Finite Element Method in Can-container Production Process of Multi-Stage Assembly (Multi-Stage 조립품인 캔-용기 생산 공정에서 동적-외연적 유한요소법을 이용한 성형해석에 관한 연구)

  • Jung, Dong-Won;Hwang, Jae-Sin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.58-63
    • /
    • 2004
  • In the present work a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of multi-stage stamping processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation Multi-Stage stamping is analyzed by using dynamic-explicit finite element method. Further, the simulated results for the panel stamping processes are shown and discussed. Its application is being increased especially in the stamping industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

Analysis of Technical Requirement for Implementation of Multi-trade Prefabrication (Multi-trade Prefabrication 기법 적용을 위한 기술적 요구사항 분석)

  • Jang, Se-Jun;Lee, Ghang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.113-114
    • /
    • 2016
  • This paper proposes a technical requirements analysis of implementation of multi-trade prefabrication. Recently, there has been a rise in the use of prefabrication to minimize on-site work for time reduction to increase productivity. Prefabrication technique is evolved into multi-trade prefabrication combining other trades from single-trade prefabrication. For implementation of new technique, not only itself but complementary techniques have to be prepared. In this paper, MEP corridor rack, a major item of multi-trade prefabrication, was implemented in the test bed and its process was analyzed to find out technical requirements. As a result, comparatively high level of IT technique was required for efficient use of multi-trade prefabrication in design, lifting and construction phase. In design phase, component level of BIM library was needed for manufacturing; and in lifting phase, BIM-based site logistics process was required. Also in construction phase, laser scanning was implemented for gathering shape and geometry of the wall and slab that were attached to multi-trade prefabrication module.

  • PDF

Analysisi of Multi-Layer P.C.B. Manufacturing Process by Simulation (시뮬레이션을 이용한 다층 P.C.B. 생산공정의 운영분석)

  • 김만식
    • Journal of the Korea Society for Simulation
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 1992
  • The capacity of the drilling process in Multi-Layer PCB fabrication can be affected by various process parameters determining material flows in the unit operations. The ratio of mass-lamination to pin lamination and the number of stacks as the most critical paramaters, among them, were chosen on the basis of exhaustive field evaluation to study their effects on the capacity of the process. The best alternative condition for maximum capacity of the process was selected by simulation of process.

  • PDF

Data Segmentation for a Better Prediction of Quality in a Multi-stage Process

  • Kim, Eung-Gu;Lee, Hye-Seon;Jun, Chi-Hyuek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.609-620
    • /
    • 2008
  • There may be several parallel equipments having the same function in a multi-stage manufacturing process, which affect the product quality differently and have significant differences in defect rate. The product quality may depend on what equipments it has been processed as well as what process variable values it has. Applying one model ignoring the presence of different equipments may distort the prediction of defect rate and the identification of important quality variables affecting the defect rate. We propose a procedure for data segmentation when constructing models for predicting the defect rate or for identifying major process variables influencing product quality. The proposed procedure is based on the principal component analysis and the analysis of variance, which demonstrates a better performance in predicting defect rate through a case study with a PDP manufacturing process.

  • PDF

Multi-Stage Cold Forging Process Design with A* Searching Algorithm (탐색 알고리즘을 이용한 냉간 단조 공정 설계)

  • 김홍석;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.30-36
    • /
    • 1995
  • Conventionally design for multi-stage cold forging depends on the designer's experience and decision-making. Due to such non-deterministic nature of the process sequence design, a flexible inference engine is needed for process design expert system. In this study, A* searching algorithm was introduced to arrive at the vetter process sequence design considering the number of forming stages and levels of effective strain, effective stress, and forming load during the porcess. In order to optimize the process sequence in producing the final part, cost function was defined and minimized using the proposed A* searching algorithm. For verification of the designed forming sequences, forming experiments and finite element analyses were carried out in the present investigation. The developed expert system using A* searching algorithm can produce a flexible design system based on changes in the number of forming stages and weights.

  • PDF

Process Design of Multi-Step Drawing using Artificial Neural Network (신경망을 이용한 다단 인발의 공정설계)

  • 김동환;김동진;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.144-147
    • /
    • 1997
  • Process design of multi-step wire drawing process, conducted by means of finite element analysis and ANN(Artificial Neural Network), has been considered. The investigated problem involves the adequate selection of the drawing die angle and the correspondent reduction rate sequence in the condition of desired initial and final diameter. Combinations of the process parameters which are used in finite element simulation are selected by using orthogonal array. Also the orthogonal array and the results of finite element simulation which are related to the process energy are used as train data of ANN. In this study, it is shown that the new technique using ANN is useful method in application to the wide range of metal forming process.

  • PDF

Experimental Study on the Multi-stage Deep Drawing Process (다단계 ?드로잉 가공에 대한 실험적 연구)

  • 박민호;김상진;서대교
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.288-296
    • /
    • 1996
  • A method of determining an optimum blank shape for non-circular deep drawing process is extended to the multi-stage deep drawing process. As an example concentric two-stage square deep drawing process is considered and the ideal blank shape with uniform cup height and without flange part after the process is constructed by the backward tracing of rigid plastic FEM. The conventional square blank shapes are also adopted for the comparison of two cases. As a result it is confirmed that the drawn products with better thickness strain distribution and deeper cup depth could be obtained by the suggested ideal blank shapes.

  • PDF

Multi-scale Simulation of Powder Compaction Process and Optimization of Process Parameters (분말가압 성형공정의 멀티스케일 시뮬레이션과 공정변수 최적화)

  • Shim, J.W.;Shim, J.G.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.344-347
    • /
    • 2007
  • For modeling the non-periodic and randomly scattered powder particles, the quasi-random multi-particle array is introduced. The multi-scale process simulation, which enables to formulate a regression model with a response surface method, is performed by employing a homogenization method. The size of ${Al_2}{O_3}$ particle, amplitude of cyclic compaction pressure, and friction coefficient are considered as optimal process parameters. The optimal conditions of process parameters providing the highest relative density are finally found by using the grid search method.

  • PDF

Development of Micro Metal Forming Manufacturing System (초미세 마이크로 소성성형 가공시스템 기술 개발)

  • Lee Nak-Kyu;Choi Tae-Hoon;Lee Hye-Jin;Chi Seog-Ou;Park Hoon-Jae;La Won-Ki
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.383-388
    • /
    • 2005
  • In this paper Research development about a micro metal forming manufacturing system has been developed. A micro forming system has been achieved in Japan and it's developed micro press is limited to single forming process. To coincide with the purpose to be more practical, research and development is necessary about the press which the multi forming process is possible. We set the development of the equipment including micro deep drawing, micro punching and micro restriking process to the goal. To achieve this goal, Research about micro forming process to be related to multi process forming must be preceded first. Material selection and analysis about micro forming process are accomplished in this paper. And the basis research to make actual system is accomplished.

  • PDF