• Title/Summary/Keyword: Multi-probabilistic atlas

Search Result 2, Processing Time 0.015 seconds

Automatic Segmentation of Renal Parenchyma using Graph-cuts with Shape Constraint based on Multi-probabilistic Atlas in Abdominal CT Images (복부 컴퓨터 단층촬영영상에서 다중 확률 아틀라스 기반 형상제한 그래프-컷을 사용한 신실질 자동 분할)

  • Lee, Jaeseon;Hong, Helen;Rha, Koon Ho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2016
  • In this paper, we propose an automatic segmentation method of renal parenchyma on abdominal CT image using graph-cuts with shape constraint based on multi-probabilistic atlas. The proposed method consists of following three steps. First, to use the various shape information of renal parenchyma, multi-probabilistic atlas is generated by cortex-based similarity registration. Second, initial seeds for graph-cuts are extracted by maximum a posteriori (MAP) estimation and renal parenchyma is segmented by graph-cuts with shape constraint. Third, to reduce alignment error of probabilistic atlas and increase segmentation accuracy, registration and segmentation are iteratively performed. To evaluate the performance of proposed method, qualitative and quantitative evaluation are performed. Experimental results show that the proposed method avoids a leakage into neighbor regions with similar intensity of renal parenchyma and shows improved segmentation accuracy.

Anterior Cruciate Ligament Segmentation in Knee MRI with Locally-aligned Probabilistic Atlas and Iterative Graph Cuts (무릎 자기공명영상에서 지역적 확률 아틀라스 정렬 및 반복적 그래프 컷을 이용한 전방십자인대 분할)

  • Lee, Han Sang;Hong, Helen
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1222-1230
    • /
    • 2015
  • Segmentation of the anterior cruciate ligament (ACL) in knee MRI remains a challenging task due to its inhomogeneous signal intensity and low contrast with surrounding soft tissues. In this paper, we propose a multi-atlas-based segmentation of the ACL in knee MRI with locally-aligned probabilistic atlas (PA) in an iterative graph cuts framework. First, a novel PA generation method is proposed with global and local multi-atlas alignment by means of rigid registration. Second, with the generated PA, segmentation of the ACL is performed by maximum-aposteriori (MAP) estimation and then by graph cuts. Third, refinement of ACL segmentation is performed by improving shape prior through mask-based PA generation and iterative graph cuts. Experiments were performed with a Dice similarity coefficients of 75.0%, an average surface distance of 1.7 pixels, and a root mean squared distance of 2.7 pixels, which increased accuracy by 12.8%, 22.7%, and 22.9%, respectively, from the graph cuts with patient-specific shape constraints.