• Title/Summary/Keyword: Multi-phase steel

Search Result 63, Processing Time 0.021 seconds

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

Using three-dimensional theory of elasticity for vibration analysis of laminated sectorial plates

  • Liyuan Zhao;Man Wang;Rui Yang;Meng Zhao;Zenghao Song;N. Bohlooli
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • The main goal of this paper is to study vibration of damaged core laminated sectorial plates with Functionally graded (FG) face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular sector plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions.

A Numerical Analysis of the Behavior of Liquid Film Around a Rotating Cylinder (회전하는 실린더 주변 액막의 거동에 대한 수치해석적 연구)

  • Lee, Sang-Hyuk;Lee, Jung-Hee;Hur, Nahm-Keon;Seo, Young-Jin;Kim, In-Cheol;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.481-486
    • /
    • 2011
  • It is important to predict the behavior of a liquid film around a rotating cylinder in the film coating process of the steel industry. When the cylinder rotates, the behavior of the liquid film on the rotating cylinder surface is influenced by the cylinder diameter, the rotation speed, the gravitational force, and the fluid properties. These parameters determine the liquid film thickness and the rise of the film on the cylinder surface. In the present study, the two-phase interfacial flow of the liquid film on the rotating cylinder were numerically investigated by using a VOF method. For various rotation speeds, cylinder diameters and fluid viscosities, the behavior of liquid film on the rotating cylinder were predicted. Thicker film around the rotating cylinder was observed with an increase in the rotation speed, cylinder diameter, and fluid viscosity. The present results for the film thickness agreed well with available experimental and analytical results.