• 제목/요약/키워드: Multi-phase converter

검색결과 136건 처리시간 0.026초

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

전기자동차용 리튬이온 배터리 급속충전장치 설계와 제어 (A Design and Control of Rapid Electric Vehicle Charging System for Lithium-Ion Battery)

  • 강태원;서용석;박현철;강병익;김성훈
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.26-36
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

Selective Harmonic Elimination in Multi-level Inverters with Series-Connected Transformers with Equal Power Ratings

  • Moussa, Mona Fouad;Dessouky, Yasser Gaber
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.464-472
    • /
    • 2016
  • This study applies the selective harmonic elimination (SHE) technique to design and operate a regulated AC/DC/AC power supply suitable for maritime military applications and underground trains. The input is a single 50/60 Hz AC voltage, and the output is a 400 Hz regulated voltage. The switching angles for a multi-level inverter and transformer turns ratio are determined to operate with special connected transformers with equal power ratings and produce an almost sinusoidal current. As a result of its capability of directly controlling harmonics, the SHE technique is applicable to apparatus with congenital immunity to specific harmonics, such as series-connected transformers, which are specially designed to equally share the total load power. In the present work, a single-phase 50/60 Hz input source is rectified via a semi-controlled bridge rectifier to control DC voltage levels and thereby regulate the output load voltage at a constant level. The DC-rectified voltage then supplies six single-phase quazi-square H-bridge inverters, each of which supplies the primary of a single-phase transformer. The secondaries of the six transformers are connected in series. Through off-line calculation, the switching angles of the six inverters and the turns ratios of the six transformers are designed to ensure equal power distribution for the transformers. The SHE technique is also employed to eliminate the higher-order harmonics of the output voltage. A digital implementation is carried out to determine the switching angles. Theoretical results are demonstrated, and a scaled-down experimental 600 VA prototype is built to verify the validity of the proposed system.

Deadbeat and Hierarchical Predictive Control with Space-Vector Modulation for Three-Phase Five-Level Nested Neutral Point Piloted Converters

  • Li, Junjie;Chang, Xiangyu;Yang, Dirui;Liu, Yunlong;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1791-1804
    • /
    • 2018
  • To achieve a fast dynamic response and to solve the multi-objective control problems of the output currents, capacitor voltages and system constraints, this paper proposes a deadbeat and hierarchical predictive control with space-vector modulation (DB-HPC-SVM) for five-level nested neutral point piloted (NNPP) converters. First, deadbeat control (DBC) is adopted to track the reference currents by calculating the deadbeat reference voltage vector (DB-RVV). After that, all of the candidate switching sequences that synthesize the DB-RVV are obtained by using the fast SVM principle. Furthermore, according to the redundancies of the switch combination and switching sequence, a hierarchical model predictive control (MPC) is presented to select the optimal switch combination (OSC) and optimal switching sequence (OSS). The proposed DB-HPC-SVM maintains the advantages of DBC and SVM, such as fast dynamic response, zero steady-state error and fixed switching frequency, and combines the characteristics of MPC, such as multi-objective control and simple inclusion of constraints. Finally, comparative simulation and experimental results of a five-level NNPP converter verify the correctness of the proposed DB-HPC-SVM.

Optimal Controller Design for Single-Phase PFC Rectifiers Using SPEA Multi-Objective Optimization

  • Amirahmadi, Ahmadreza;Dastfan, Ali;Rafiei, Mohammadreza
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.104-112
    • /
    • 2012
  • In this paper a new method for the design of a simple PI controller is presented and it has been applied in the control of a Boost based PFC rectifier. The Strength Pareto evolutionary algorithm, which is based on the Pareto Optimality concept, used in Game theory literature is implemented as a multi-objective optimization approach to gain a good transient response and a high quality input current. In the proposed method, the input current harmonics and the dynamic response have been assumed as objective functions, while the PI controller's gains of the PFC rectifier (Kpi, Tpi) are design variables. The proposed algorithm generates a set of optimal gains called a Pareto Set corresponding to a Pareto Front, which is a set of optimal results for the objective functions. All of the Pareto Front points are optimum, but according to the design priority objective function, each one can be selected. Simulation and experimental results are presented to prove the superiority of the proposed design methodology over other methods.

Development of Prototype Multi-channel Digital EIT System with Radially Symmetric Architecture

  • Oh, Tong-In;Baek, Sang-Min;Lee, Jae-Sang;Woo, Eung-Je;Park, Chun-Jae
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권4호
    • /
    • pp.215-221
    • /
    • 2005
  • We describe the development of a prototype multi-channel electrical impedance tomography (EIT) system. The EIT system can be equipped with either a single-ended current source or a balanced current source. Each current source can inject current between any chosen pair of electrodes. In order to reduce the data acquisition time, we implemented multiple digital voltmeters simultaneously acquiring and demodulating voltage signals. Each voltmeter measures a differential voltage between a fixed pair of adjacent electrodes. All voltmeters are configured in a radially symmetric architecture to optimize the routing of wires and minimize cross-talks. To maximize the signal-to-noise ratio, we implemented techniques such as digital waveform generation, Howland current pump circuit with a generalized impedance converter, digital phase-sensitive demodulation, tri-axial cables with both grounded and driven shields, and others. The performance of the EIT system was evaluated in terms of common-mode rejection ratio, signal-to-noise ratio, and reciprocity error. Future design of a more innovative EIT system including battery operation, miniaturization, and wireless techniques is suggested.

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian;Hang, Lijun;Liu, Dongliang;Geng, Shengbao;Ma, Xiaonan;Li, Zhen
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1659-1669
    • /
    • 2018
  • An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.

Design Considerations for Auto-Connected Multi-Pulse Rectiviers for High Power AC Motor Drives

  • 이방섭
    • 전력전자학회논문지
    • /
    • 제4권5호
    • /
    • pp.413-422
    • /
    • 1999
  • Auto-connected multipulse(12/24pulse) rectifier schemes are cost effective methods for reducing line current hamonics in PWM drive systems. Employing these schemes to enhance utility power quality requires careful attention to several design considerations In particular, excursion of dc-link voltage at no load, effect of pre-existing voltage distortion, impedance mismatches, unequal diode drops on rectifier current sharing and performance, are fully analyzed, Several corrective measures to improve the performance of 12/24­pulse rectifier systems are also discussed. Finally, experimental results on a 460V, 60Hz 400kVA commercial ASD, retrofitted with 12/24pulse rectifier systems are discussed in detail.

  • PDF

태양광 발전 시스템용 소프트 스위칭 다상 부스트 컨버터 (Soft Switching Multi-Phase Boost Converter for Photovoltaic System)

  • 이주혁;김재형;장수진;원충연;정용채
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 추계학술대회 논문집
    • /
    • pp.184-186
    • /
    • 2007
  • 본 논문에서는 소프트 스위칭 다상 부스트 컨버터 회로를 제안하였다. 태양의 일사량 및 주위온도 등에 의해 출력전압의 변동이 많은 태양전지로부터 정전압을 얻기 위해서 고효율의 전력변환 장치가 필요하다. 제안된 컨버터를 이용하여 동작 범위 내에서 변동하는 입력전압을 정출력전압으로 제어하고, 입력전류 리플과 출력전압 리플을 저감시킬 수 있다. 또한 ZVS, ZCS를 이용하여 스위칭 순간에 Turn-on, Turn-off 손실을 감소할 수 있다. 본 논문에서는 소프트 스위칭 다상 부스트 컨버터를 적용하여 시뮬레이션을 수행하였다.

  • PDF

Fast Diagnosis Method for Submodule Failures in MMCs Based on Improved Incremental Predictive Model of Arm Current

  • Xu, Kunshan;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1608-1617
    • /
    • 2018
  • The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.