• Title/Summary/Keyword: Multi-path Routing

Search Result 235, Processing Time 0.022 seconds

Stability-based On-demand Multi-path Distance Vector Protocol for Edge Internet of Things

  • Dongzhi Cao;Peng Liang;Tongjuan Wu;Shiqiang Zhang;Zhenhu Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2658-2681
    • /
    • 2023
  • In edge computing scenarios, IoT end devices play a crucial role in relaying and forwarding data to significantly improve IoT network performance. However, traditional routing mechanisms are not applicable to this scenario due to differences in network size and environment. Therefore, it becomes crucial to establish an effective and reliable data transmission path to ensure secure communication between devices. In this paper, we propose a trusted path selection strategy that comprehensively considers multiple attributes, such as link stability and edge cooperation, and selects a stable and secure data transmission path based on the link life cycle, energy level, trust level, and authentication status. In addition, we propose the Stability-based On-demand Multipath Distance Vector (STAOMDV) protocol based on the Ad hoc AOMDV protocol. The STAOMDV protocol implements the collection and updating of link stability attributes during the route discovery and maintenance process. By integrating the STAOMDV protocol with the proposed path selection strategy, a dependable and efficient routing mechanism is established for IoT networks in edge computing scenarios. Simulation results validate that the proposed STAOMDV model achieves a balance in network energy consumption and extends the overall network lifespan.

Distribution based Reliable Routing Scheme with Cooperative Nodes for Wireless Sensor Networks (무선 센서 네트워크의 분산 기반 라우팅 기법)

  • Cho, Bum-Sung;Shon, Min Han;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.752-754
    • /
    • 2012
  • 무선센서네트워크 환경에서는 에너지 효율적인 데이터 패킷 전송을 위해 multi-hop routing 기법과 multi-path routing 기법 등이 연구되고 있다. 두 기법 모두 에너지를 적게 소모하는 경로를 택하여 데이터 패킷을 전송한다. 그러나 에너지를 적게 소모하는 경로를 택하기 위해 센서 노드 간 거리가 가까워져 목적지까지 데이터 패킷을 전송하는데 많은 홉 수를 필요로 한다. 따라서 본 논문에서는 에너지 효율적인 경로를 택하면서 동시에 목적지 가까이에서 데이터 패킷 전송을 이어가는 cooperative communication 기반의 라우팅 기법을 제안한다.

Performance Analysis of Shared Buffer Router Architecture for Low Power Applications

  • Deivakani, M.;Shanthi, D.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.736-744
    • /
    • 2016
  • Network on chip (NoC) is an emerging technology in the field of multi core interconnection architecture. The routers plays an essential components of Network on chip and responsible for packet delivery by selecting shortest path between source and destination. State-of-the-art NoC designs used routing table to find the shortest path and supports four ports for packet transfer, which consume high power consumption and degrades the system performance. In this paper, the multi port multi core router architecture is proposed to reduce the power consumption and increasing the throughput of the system. The shared buffer is employed between the multi ports of the router architecture. The performance of the proposed router is analyzed in terms of power and current consumption with conventional methods. The proposed system uses Modelsim software for simulation purposes and Xilinx Project Navigator for synthesis purposes. The proposed architecture consumes 31 mW on CPLD XC2C64A processor.

Hopping Routing Scheme to Resolve the Hot Spot Problem of Periodic Monitoring Services in Wireless Sensor Networks (주기적 모니터링 센서 네트워크에서 핫 스팟 문제 해결을 위한 호핑 라우팅 기법)

  • Heo, Seok-Yeol;Lee, Wan-Jik;Jang, Seong-Sik;Byun, Tae-Young;Lee, Won-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2340-2349
    • /
    • 2009
  • In this paper we proposed a hopping routing scheme to resolve the hot spot problem for periodic monitoring services in wireless sensor networks. Our hopping routing scheme constructs load balanced routing path, where an amount of energy consumption of all nodes in the sensor networks is predictable. Load balanced routing paths can be obtained from horizontal hopping transmission scheme which balances the load of the sensor nodes in the same area, and also from vertical hopping transmission scheme which balances the load of the sensor nodes in the other area. The direct transmission count numbers as load balancing parameter for vertical hopping transmission are derived using the energy consumption model of the sensor nodes. The experimental results show that the proposed hopping scheme resolves the hot spot problem effectively. The efficiency of hopping routing scheme is also shown by comparison with other routing scheme such as multi-hop, direct transmission and clustering.

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.735-748
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1178-1191
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

Multipath Routing Method for QoS Support in WMSNs (WMSN에서 QoS 지원을 위한 다중 경로 라우팅 기법)

  • Bae, Si-Yeong;Lee, Sung-Keun;Park, Kyoung-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.3
    • /
    • pp.453-458
    • /
    • 2013
  • Aside from the issues like energy saving and maximizing network lifetime. WMSN has another issue to deal with: support of quality of service(QoS) which is required especially for handling real-time data such as object tracking and data gathering. This paper proposes a multipath routing algorithm considering the distance to sink node, energy level and link quality of neighbour nodes. Proposed algorithm supports multipath routing path with high quality links. Hence it helps to reduce a power consumption concentration that happens in particular set of nodes along the frequently selected route. It also specifies a service quality pattern and a service quality level depending on traffic pattern. By doing this, the proposed algorithm can realize a differentiated service with QoS guaranteed data transmission.

Load Balancing in MPLS Networks (MPLS 네트워크에서의 부하 분산 방안)

  • Kim, Sae-Rin;Song, Jeong-Hwa;Lee, Mee-Jeong
    • The KIPS Transactions:PartC
    • /
    • v.9C no.6
    • /
    • pp.893-902
    • /
    • 2002
  • MPLS enables efficient explicit routing, and thus provides great advantages in supporting traffic engineering. Exploiting this capability, we Propose a load balancing scheme which deploys a multipath routing. It is named LBM (Load Balancing in MPLS networks), and targets at efficient network utilization as well as performance enhancement. LBM establishes multiple LSP (Label Switched Path)s between a pair of ingress-egress routers, and distributes traffic over these LSPs at the new level. Its routing decision is based on both the length and the utilization of the paths. In order to enhance the efficiency of a link usage, a link is limited to be used by shorter paths as its utilization becomes higher Longer paths are considered to be candidate alternative paths as the utilization of shorter paths becomes higher. Simulation experiments are performed in order to compare the performance of LBM to that of static shortest path only scheme as well as the other representative dynamic multipath traffic distribution approaches. The simulation results show that LBM outperforms the compared approaches, and the performance gain is more significant when the traffic distribution among the ingress-egress pairs is non-uniform.

A Robust Energy Saving Data Dissemination Protocol for IoT-WSNs

  • Kim, Moonseong;Park, Sooyeon;Lee, Woochan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5744-5764
    • /
    • 2018
  • In Wireless Sensor Networks (WSNs) for Internet of Things (IoT) environment, fault tolerance is a most fundamental issue due to strict energy constraint of sensor node. In this paper, a robust energy saving data dissemination protocol for IoT-WSNs is proposed. Minimized energy consumption and dissemination delay time based on signal strength play an important role in our scheme. The representative dissemination protocol SPIN (Sensor Protocols for Information via Negotiation) overcomes overlapped data problem of the classical Flooding scheme. However, SPIN never considers distance between nodes, thus the issue of dissemination energy consumption is becoming more important problem. In order to minimize the energy consumption, the shortest path between sensors should be considered to disseminate the data through the entire IoT-WSNs. SPMS (Shortest Path Mined SPIN) scheme creates routing tables using Bellman Ford method and forwards data through a multi-hop manner to optimize power consumption and delay time. Due to these properties, it is very hard to avoid heavy traffic when routing information is updated. Additionally, a node failure of SPMS would be caused by frequently using some sensors on the shortest path, thus network lifetime might be shortened quickly. In contrast, our scheme is resilient to these failures because it employs energy aware concept. The dissemination delay time of the proposed protocol without a routing table is similar to that of shortest path-based SPMS. In addition, our protocol does not require routing table, which needs a lot of control packets, thus it prevents excessive control message generation. Finally, the proposed scheme outperforms previous schemes in terms of data transmission success ratio, therefore our protocol could be appropriate for IoT-WSNs environment.

Development of New Algorithm for RWA Problem Solution on an Optical Multi-Networks

  • Tack, Han-Ho;Kim, Chang-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.194-197
    • /
    • 2002
  • This paper considers the problem of routing connections in a optical multi tree networks using WDM (Wavelength Division Multiplexing), where each connection between a pair of nodes in the network is assigned a path through the network and a wavelength on that path, so that connections whose paths share a common link in the network are assigned different wavelengths. The problem of optimal coloring of the paths on the optical multi-networks is NP-hard[1], but if that is the coloring of all paths, then there exists efficient polynomial time algorithm. In this paper, using a "divide & conquer" method, we give efficient algorithm to assign wavelengths to all the paths of a tree network based on the theory of [7]. Here, our time complexity is 0(n4log n).