• Title/Summary/Keyword: Multi-parameter

Search Result 1,177, Processing Time 0.022 seconds

Spot Weld Fatigue Life Prediction of Auto Set Belt Anchors Using $K_e$ (K_e에 의한 차량 안전벨트 앵커의 점용접 피로수명 예측)

  • Kim, Nam-Ho;Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.701-709
    • /
    • 2000
  • As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. Recasting the load vs. fatigue life relationships experimentally obtained, we predicted the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot. We therefore attempt to evaluate the effectiveness and validity of $K_e$ in predicting the fatigue life of auto seat belt anchor panel. We first establish finite element models reflecting the actual mechanical behavior of 3 types of seat belt anchor specimens. Using finite element models elaborately established, we then obtain the effective crack driving parameter $K_e$ composed of its ductility -dependent modal components. It is confirmed that the $K_e$ concept successfully predicts the fatigue life of multi-spot welded panel structures represented by auto seat belt anchors here.

A Study of Multi-point Numerical Optimization Design for Transonic Airfoils (천음속 날개꼴의 Multi-point 수치최적화 설계에 관한 연구)

  • 손명환;권성재
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.145-153
    • /
    • 1998
  • In the direct numerical optimization method, the aerodynamic coefficients of the airfoil designed by one-point design can be deteriorated at other operating points. Therefore, the capacity of the multi-point design is indispensable for actual airfoil design. In this paper, the two-point design of transonic airfoils is studied based on the Navier-Stokes equations flow solver and the feasible direction optimization algorithm, and the effects of weighting parameter were analyzed and compared. The results show that the airfoils designed by two-point design satisfy the performances at the peripheral regions of two operating points concurrently and have the favorable aerodynamic characteristics at the point which has larger weighting parameter than the other point.

  • PDF

Kalman Filter-based Navigation Algorithm for Multi-Radio Integrated Navigation System

  • Son, Jae Hoon;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.99-115
    • /
    • 2020
  • Since GNSS is easily affected by jamming and/or spoofing, alternative navigation systems can be operated as backup system to prepare for outage of GNSS. Alternative navigation systems are being researched over the world, and a multi-radio integrated navigation system using alternative navigation systems such as KNSS, eLoran, Loran-C, DME, VOR has been researched in Korea. Least Square or Kalman filter can be used to estimate navigation parameters in the navigation system. A large number of measurements of the Kalman filter may lead to heavy computational load. The decentralized Kalman filter and the federated Kalman filter were proposed to handle this problem. In this paper, the decentralized Kalman filter and the federated Kalman filter are designed for the multi-radio integrated navigation system and the performance evaluation result are presented. The decentralized Kalman filter and the federated Kalman filter consists of local filters and a master filter. The navigation parameter is estimated by local filters and master filter compensates navigation parameter from the local filters. Characteristics of three Kalman filters for a linear system and nonlinear system are investigated, and the performance evaluation results of the three Kalman filters for multi-radio integrated navigation system are compared.

Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory

  • Rouabhia, Abdelkrim;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Heireche, Houari;Tounsi, Abdeldjebbar;Kouider Halim, Benrahou;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.695-709
    • /
    • 2020
  • The buckling properties of a single-layered graphene sheet (SLGS) are examined using nonlocal integral first shear deformation theory (FSDT) by incorporating the influence of visco-Pasternak's medium. This model contains only four variables, which is even less than the conventional FSDT. The visco-Pasternak's medium is introduced by considering the damping influence to the conventional foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The nanoplate under consideration is subjected to compressive in- plane edge loads per unit length. The impacts of many parameters such as scale parameter, aspect ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the stability investigation of the SLGSs are examined in detail. The obtained results are compared with the corresponding available in the literature.

A Study on the Effect of Normal Stress on the Joint Shear Behavior (절리면 전단거동에서의 법선응력 영향 고찰)

  • Cho, Taechin;Suk, Jaewook
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.203-211
    • /
    • 2013
  • Shear behavior of joint plane has been investigated considering the magnitude of normal stresses and initial surface roughness. Shear strength of joint plane has been measured by performing the multi-stage shear test in which applied normal stress level has been increased stepwise. Multi-stage shear test within the specified normal stress range has been repeated and two types of strength parameter variation have been observed: type 1 - both cohesion and friction angle decrease, type 2 - cohesion decrease and friction angle increase. Trends of strength parameter variation for the three rock types, gneiss, granite and shale, have been investigated and the influence of initial roughness of joint plane on the sequential shear strength change for the repeated multi-stage shear tests also has been analyzed.

Multi-Rate and Multi-BEP Transmission Scheme Using Adaptive Overlapping Pulse-Position Modulator and Power Controller in Optical CDMA Systems

  • Miyazawa Takaya;Sasase Iwao
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.462-470
    • /
    • 2005
  • We propose a multi-rate and multi-BEP transmission scheme using adaptive overlapping pulse-position modulator (OPPM) and optical power controller in optical code division multiple access (CDMA) networks. The proposed system achieves the multi-rate and multi-BEP transmission by accommodating users with different values of OPPM parameter and transmitted power in the same network. The proposed scheme has advantages that the system is not required to change the code length and number of weight depending on the required bit rate of a user and the difference of bit rates does not have so much effect on the bit error probabilities (BEPs). Moreover, the difference of transmitted powers does not cause the change of bit rate. We analyze the BEPs of the four multimedia service classes corresponding to the com­binations of high/low-rates and low/high-BEPs and show that the proposed scheme can easily achieve distinct differentiation of the service classes with the simple system configuration.

Robust Saturation Controller for the Stable LTI System with Structured Real Parameter Uncertainties (구조적 파라미터 불확실성을 갖는 안정한 선형계에 대한 강인 포화 제어기)

  • Lim Chae-Wook;Park Young-Jin;Moon Seok-Jun;Park Youn-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.517-523
    • /
    • 2006
  • This paper is focused on a robust saturation controller for the stable linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. Based on affine quadratic stability and multi-convexity concept, a robust saturation controller is newly proposed and the linear matrix inequality (LMI)-based sufficient existence conditions for this controller are presented. The controller suggested in this paper can analytically prescribe the lower and upper bounds of parameter uncertainties, and guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. Through numerical simulations, it is confirmed that the proposed robust saturation controller is robustly stable with respect to parameter uncertainties over the prescribed range defined by the lower and upper bounds.

EFFECTS OF RADIATION AND HEAT GENERATION ON MHD AND PARABOLIC MOTION ON CASSON FLUIDS FLOW THROUGH A ROTATING POROUS MEDIUM IN A VERTICAL PLATE

  • J. PRAKASH;A. SELVARAJ
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.607-623
    • /
    • 2024
  • This article studies the effects of heat generation/absorption and thermal radiation on the unsteady magnetohydrodynamic (MHD) Casson fluid flow past a vertical plate through rotating porous medium with constant temperature and mass diffusion. It is assumed that the plate temperature and concentration level are raised uniformly. For finding the exact solution, a set of non-dimensional partial differential equations is solved analytically using the Laplace transform technique. The influence of various non-dimensional parameters on the velocity are discussed, including the effects of the magnetic parameter M, heat generation/absorption Q, thermal radiation parameter R, Prandtl number Pr, Schmidt number Sc, permeability of porous medium parameter, Casson fluid parameter γ, on velocity, temperature, and concentration profiles, which are discussed through several figures. It is found that velocity, temperature, and concentration profiles in the case of heat generation parameter Q, Casson fluid parameter γ, thermal Grashof number Gr, mass Grashof number Gc, Permeability Porous medium parameter K, and time t have retarding effects. It is also seen that the magnetic field M, Thermal Radiation parameter R, Prandtl field Pr, Schmidt number Sc have reverse effects on it.