• 제목/요약/키워드: Multi-panel Structure

검색결과 77건 처리시간 0.027초

RF Magnetron 스퍼터링 공정을 이용한 BIPV용 산화 금속 다중층 컬러 유리 구현 기술 연구 (Metal Oxide Multi-Layer Color Glass by Radio Frequency Magnetron Sputtering for Building Integrated Photovoltaic System)

  • ;안현식;김민회;이재현;최윤석
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.1056-1061
    • /
    • 2018
  • 본 연구에서는 건물 외벽 태양광 발전 통합 시스템(BIPV: Building Integrated Photovoltaic System)용 컬러 유리의 구조를 제안하고 이를 구현하기 위한 공정 기술을 개발하였다. 굴절률 값이 다른 두 종류의 산화 금속 박막을 집적함으로써 투과도가 우수하면서도 서로 다른 컬러를 구현할 수 있음을 파동광학에 기반한 전산모사를 통해서 확인하였다. 선택된 구조를 구현하기 위해 RF Magnetron 증착 방법을 통해 목표로 하는 두께를 균일하게 얻을 수 있는 공정을 개발하였다. 실험 시편에 대한 광학적 분석을 전산모사 결과와 비교하여 분석한 결과, 원하는 컬러 유리를 랩 스케일에서 안정적으로 구현할 수 있음을 알 수 있었으며, 상온에서 일주일 이상의 안정성을 갖는 것을 확인하였다. 이러한 기술은 BIPV 건축물을 구축하는 데에 유용할 것으로 기대된다.

Multi 출력단을 Single Transformer로 통합 설계한 고효율 PDP용 전원시스템 (A High Efficiency Multi Output PDP Power System with Single Transformer Structure)

  • 박상갑;김종해;이효범;한상규;홍성수;사공석진;노정욱
    • 전력전자학회논문지
    • /
    • 제13권1호
    • /
    • pp.70-77
    • /
    • 2008
  • 기존 PDP 전원 시스템은 일반적으로 두 개의 절연형 트랜스포머를 사용하여 서스테인 전원($V_S$)과 어드레스 전원($V_A$), Multi단 전원($V_M$)으로 구성된다. 이들 각 전력 변환 회로에 트랜스포머 및 제어 IC가 사용되므로, 효율 저감 및 원가 상승, 소자 스트레스 등의 단점을 가지고 있다. 본 논문에서는 절연형 트랜스포머 한 개로 PDP 전원시스템을 구동하는 방식에 대해 제안한다. 제안된 방식은 DC/DC 전력단의 고효율 동작 및 신뢰성 개선은 물론 부피, 크기를 줄여 원가 저감에 기여한다. 또한, 제안된 방식은 PDP 구동 방식의 하나인 Address Display-period Separation(ADS)에 적합하다. 기존 방식과 제안된 방식을 비교하고 이론적 분석과 실험을 통해 제안된 방식의 우수성을 확인하였다.

3차원 쉐이핑 기술을 활용한 스포츠 브래지어 개발 (Development of Sports Brassiere Pattern Using 3D Shaping Technology)

  • 김소영
    • 한국의류산업학회지
    • /
    • 제21권4호
    • /
    • pp.480-487
    • /
    • 2019
  • This study used 3D technology to develop a multi-functional sports brassiere with increased comfort and fit that can be worn as a base layer during exercise or as underwear. A 75A size industrial lingerie figure was used to develop a standard pattern. 3D tools for scanning and pattern making, such as Vivid 910, Geomagic Design X, 2C-AN and Yuka CAD were used. The sports brassiere was designed as a tank top style with dual structure and linings attached to a pad utilized with a sport brassiere mold cup. 3D outer and lining's pattern was differently developed in consideration of the body's curvature with pad's shape and structure. Shoulder and neck part reduction rates were adjusted to increase the neck areas fit that considered the nude pattern's structure due to uncomfortableness felt by wearers who were uncomfortable with the neck areas fit on existing brand products. The reduction rate was also set differently on each part. For example, the reduction rate on outer side panel was set strongly to increase the breast's volume. Two products, developed by a 3D sports brassiere and previously released product, were worn on 8 subjects in their 20's to evaluate fit, comfort, and purchase preferences. The evaluation proved that newly developed 3D products were superior to comparative products. The results of the clothing pressure measurement indicate that the newly developed sports brassiere's front part had less pressure on upper bust and shoulder areas compared to comparative products as well as showed less pressure on the back side, which shows improved wearing comfort compared to comparative products.

TiO2/ZnS/Ag/ZnS/TiO2 다층막의 PDP 필터용 전극 특성 (Transparent Electrode Performance of TiO2/ZnS/Ag/ZnS/TiO2 Multi-Layer for PDP Filter)

  • 오원석;이서희;장건익;박성완
    • 한국전기전자재료학회논문지
    • /
    • 제23권9호
    • /
    • pp.681-684
    • /
    • 2010
  • The $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ multilayered structure for the transparent electrodes in plasma display panel was designed by essential macleod program (EMP) and the multilayered film was deposited on a glass substrate by direct-current (DC)/radio-frequency (RF) magnetron sputtering system. During film deposition process, the Ag layer in $TiO_2$/Ag/$TiO_2$ structure became oxidized and the filter characteristic was degraded easily. In this study, ZnS layer was adopted as a diffusion blocking layer between $TiO_2$ and Ag to prevent the oxidation of Ag layer efficiently in $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ structure. Based on the AES depth profiling analysis, the Ag layer was effectively protected by the ZnS layer as compared with the $TiO_2$/Ag/$TiO_2$ multilayered films without ZnS as an antioxidant layer. The 3 times stacked $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ films have low sheet resistance of $1.22{\Omega}/{\square}$ and luminous transmittance was as high as 62% in the visible ranges.

Dynamic responses of an FPSO moored on sloped seabed under the action of environmental loads

  • Roy, Shovan;Banik, Atul K.
    • Ocean Systems Engineering
    • /
    • 제8권3호
    • /
    • pp.329-343
    • /
    • 2018
  • The inclination of seabed profile (sloped seabed) is one of the known topographic features which can be observed at different seabed level in the large offshore basin. A mooring system connected between the platform and global seabed is an integral part of the floating structure which tries to keep the floating platform settled in its own position against hostile sea environment. This paper deals with an investigation of the motion responses of an FPSO platform moored on the sloped seabed under the combined action of wave, wind and current loads. A three-dimensional panel discretization method has been used to model the floating body. To introduce the connection of multi-segmented non-linear elastic catenary mooring cables with the sloped seabed, a quasi-static composite catenary model is employed. The model and analysis have been completed by using hydrodynamic diffraction code AQWA. Validation of the numerical model has been successfully carried out with an experimental work published in the latest literature. The analysis procedure in this study has been followed time domain analysis. The study involves an objective oriented investigation on platform motions, in order to identify the effects of the slopped seabed, the action of the wave, wind and current loads and the presence of riser system. In the end, an effective analysis has been performed to identify a stable mooring model in demand of reducing structural responses of the FPSO.

Vibration performance characteristics of a long-span and light-weight concrete floor under human-induced loads

  • Cao, Liang;Liu, Jiepeng;Zhou, Xuhong;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.349-357
    • /
    • 2018
  • An extensive research was undertaken to study the vibration serviceability of a long-span and light-weight floor subjected to human loading experimentally and numerically. Specifically, heel-drop test was first conducted to capture the floor's natural frequencies and damping ratios, followed by jumping and running tests to obtain the acceleration responses. In addition, numerical simulations considering walking excitation were performed to further evaluate the vibration performance of a multi-panel floor under different loading cases and walking rates. The floor is found to have a high frequency (11.67 Hz) and a low damping ratio (2.32%). The comparison of the test results with the published data from the 1997 AISC Design Guide 11 indicates that the floor exhibits satisfactory vibration perceptibility overall. The study results show that the peak acceleration is affected by the walking path, walking rate, and adjacent structure. A simpler loading case may be considered in design in place of a more complex one.

현대 패션에 나타난 큐비즘스타일패션 연구: 2010 S/S - 2013 S/S 파리컬렉션을 중심으로 (A Study on Cubism Fashion Style Appearing in Modern Fashion: Focused on the 2010 S/S-2013 S/S Paris Collection)

  • 최예리;최정욱
    • 패션비즈니스
    • /
    • 제18권2호
    • /
    • pp.14-28
    • /
    • 2014
  • This study analyzed the group of experts who were related to cubism, selected among the works of 2010~2013 Paris Collection based on F.G.R.(Focus Group Research). According to the results of this study, there were appeared first, 'a one-piece dress' second, 'H silhouette' third, 'cotton', in case of item distribution and frequency. The analysis was done by using the manner of expression, cubical expression, exaggeration, distortion, dismantlement, geometrical division of face, mix-match look, wraparound repetition, asymmetric structure, etc. Based on the outcomes of the analysis on figurative design elements, this study adjusted three manners appearing on cubism fashion style. First, it was 'avant garde manner' of constitution or 'dismantlement' which was compiled into multi-view representations of overlaps and viewpoints by repetitive use of color tone trimming detail. Second, it was 'geomagnetic block placement' which expresses cubism with geometric partitioning of surface and separation of panel by cutting disintegration. Finally, it was 'distortion and simplification of silhouette' which is a distortion created by constitution-line pressed thin with silhouette. It maximizes the beauty of human body outline, which was distorted by three-dimensional-manipulation, and simplified by ellipsis for another shape for the extension or expansion of detail trimming.

피라미드 트러스 코어 단위셀의 기계적 특성에 관한 해석적 및 수치적 연구 (Analytical and Numerical Study on Mechanical Behavior of Unit Cell of Pyramidal Truss Core Structures)

  • 김상우;이영선;강범수
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.623-631
    • /
    • 2011
  • Metallic sandwich panels based on a truss core structure have been developed for a wide range of potential applications with their lightweight and multi-functionality. Structural performance of sandwich panels can be predicted from the studies on mechanical behavior of a unit cell of truss core structures. Analytical investigations on the unit cell provide approximated guidelines for the design of overall core structures for a specific application in short time. In this study, the effects of geometrical parameters on mechanical behavior of a pyramidal shape of unit cell were investigated with analytical models. The unit cell with truss member angle of 45 degree was considered as reference model and other models were designed to have the same weight and projected area but different truss member angle. All truss members were assumed to be connected with pin joint in analytical models. Under the assumptions, the equivalent strength and stiffness of the unit cell under compressive and shear loads were predicted and compared. And finally, the optimum core member angle to have maximum mechanical property could be calculated and verified with FE analysis results.

디지털 X-ray imaging을 위한 Hybrid 방식의 다층구조 설계 (Multi-layer design of Hybrid method for digital X-ray imaging)

  • 조성호;박지군;이동길;김대환;김재형;남상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.75-78
    • /
    • 2003
  • In recent years, there has been keen interest in developing flat panel detectors for all modalities of radiology, including gerneral radiology, fluoroscopy, electronic portal imaging, and mammography. In this paper, we report the new hybrid x-ray detector consisted of ZnS(Ag) photoemission layer and a-Se photoconductor layer to resolve problem of conventional x-ray detector such as the direct detector and the indirect detector. To design the structure of ZnS(Ag)/a-Se detector, the penetrated energy spectrum and absorption fraction was estimated using MCNP 4C code. Also, we carried out the experiment to demonstrate the result of MCNP 4C code. Experimental results showed that the absorption fraction of $500{\mu}m$-ZnS(Ag) film was above 87%, 75% at 60 and 80 kVp. As a results, we can determined the thickness of suitable phosphor and the thickness of photoconductor.

  • PDF

보행자 보호를 위한 안전 후드 개발 (Development of Safe Hood for Pedestrian Protection)

  • 김태정;홍승현;이두환;한도석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.345-346
    • /
    • 2008
  • Most pedestrian-vehicle crashes involve frontal impacts, and the vehicle front structures are responsible for most pedestrian injuries. The vehicle bumper contacts the lower legs at first. The leading edge of the hood (bonnet) strikes the proximal upper leg and finally, the head and upper torso hit the top surface of the hood or windscreen. In essence, the pedestrian wraps around the front of the vehicle until pedestrian and vehicle are traveling at the same speed. Since the hood surface is made from sheet metal, it is a relatively compliant structure and does not pose a major risk for severe head trauma. However, serious head injury can occur when the head hits a region of the hood with stiff underlying structures such as engine components. The solution is to provide sufficient clearance between the hood and underlying structures for controlled deceleration of a pedestrian's head. However, considerations of aerodynamic design and styling can make it extremely difficult to alter a vehicle's front end geometry to provide more under-hood space. In this study, the safe hood will be developed by designing new conceptual inner panel in order to decrease the pedestrian's head injuries without changing hood outer geometry.

  • PDF