• Title/Summary/Keyword: Multi-panel Structure

Search Result 76, Processing Time 0.024 seconds

Sound Transmission Loss Maximization of Multi-panel Structures Lined with Poroelastic Materials by Topology Optimization (전달손실 최대화를 위한 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.728-733
    • /
    • 2008
  • Though multi-panel structures lined with a poroelastic material have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain the optimal sequence of multi-panel structures lined with a poroelastic material yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem for a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as Interpolated functions of design variables. The designed sequences of panel-poroelastic layers were shown to be significantly affected by the target frequencies; more panel layers were used at higher target frequencies. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

  • PDF

An Estimation of the Sound Insulation Performance of the Multi-layered Panel for a Tilting Train (틸팅 차량용 적층재의 차음성능 평가)

  • Seo, Tae-Gun;Lim, Bong-Gi;Kim, Seock-Hyun;Kim, Jae-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.597-600
    • /
    • 2009
  • Sound transmission loss (TL) is experimently investigated on the multi-layered panel used for the floor of a tilting train. Measurement of the intensity transmission loss is performed according to ASTM E 2249-02. The floor structure consists of corrugated steel panel, glass wool, plywood and cover. On the corrugated steel panel, TL drop by local resonance is considered and the TL improvement effect by damping treatment is estimated. Total sound transmission loss of the entire floor structure is obtained and the contribution of each layer is examined.

  • PDF

Multi-mode Noise Reduction of Smart Panels Using Piezoelectric Shunt Damping (압전션트 댐핑을 이용한 지능패널의 다중 모드 소음 저감)

  • 김준형;김재환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.300-307
    • /
    • 2003
  • This paper presents the multi-mode noise reduction of smart panels of which passive piezoelectric shunt damping is introduced. For the piezoelectric shunt damping, a passive shunt circuit composed of inductors and a load resistor is connected to the piezoelectric patch mounted on the panel structure. An electrical impedance model is introduced for the system based on the measured electrical impedance, and the criteria for maximum energy dissipation at the shunt circuit is used to find the optimal shunt parameters. For multi-mode shunt damping, the shunt circuit is modified by the introduction of a block circuit. Also the optimal location of the piezoelectric patch is studied by finite element analysis in order to cause the maximum admittance from the patch for each mode of the structure. An acoustic test is performed for the panels and a remarkable noise reduction is obtained in multiple modes of the panel structure.

A Study on the Improvement of Multi-Layer Coating Method on Concrete Base (성형 콘크리트 복층마감도장 공법 개선에 관한 연구)

  • Kim, Chong-Weon;Choi, In-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.1
    • /
    • pp.93-105
    • /
    • 2003
  • The Precast Concrete(PC) method was developed for a large production of a structure in Europe. Afterwards, this PC method has been applied to a structure and an outside Coating of buildings extensively. The outside Coating of the building applied this PC method is a method to put tiles or stones to base concrete. And there is a method to use paints for, so the expression of various patterns is possible. The Multi-Layer Coating is one of the methods to use paints. This Multi-Layer Coating method can show various designs of external appearance with Foam when it is made with the PC panel. Also, the paint film of the PC panel enables a splendid appearance, and a protective function of concrete is possible, too. Therefore, it makes good durability of the PC. Besides, maintenance is easy to manage because it is free from pollution when it uses metallic materials, stones, or any other materials. You might have no trouble in applying the Multi-Layer Coating method in order to save a merit of an outside Coating on the PC panel. However, the Multi-Layer Coating method used as a current outside Coating method has pollution and bad working environment because Oil Epoxy Resins have toxicity and flammability. Therefore, a lot of warnings are required for coating work in order to have appropriate quality because working hours are short, and production efficiency is low too. These reasons make the cost of construction of the Multi-Layer Coating method increase. And employers or designers may have problems in selecting this Multi-Layer Coating method. Therefore, the purpose of this study is to get activation of the Multi-Layer Coating method by offering improvement measures about the problems of the existing Multi-Layer Coating method.

Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure (피라미드 구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 특성평가)

  • 정창균;윤석준;성대용;양동열;안동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.483-486
    • /
    • 2004
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

  • PDF

A Study on Flame Spread Prevention of Sandwich Panel (복합자재 화재확산방지구조에 대한 연구)

  • Cho, Nam-Wook;Kim, Do-Hyun;Shim, Ji-Hun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.84-90
    • /
    • 2015
  • Multi-layered material (sandwich panel) consists of double-sided steel plate which is incombustible material or similar material and core material which is not incombustible material. In case of sandwich panel which uses combustible material as insulation, flames spread inside the steel plate at the time of fire so that it is difficult to extinguish fire from the outside and flames spread rapidly and may cause the building to collapse. The current Building Act requires the sandwich panel to secure fire-retardant performance according to the purpose and size of building. In this study, the fire spreading prevention structure applied to partial exterior walls was applied to multi-layered material and its effect was measured through full scale fire test and the possibility to secure fire safety of buildings by applying the fire spreading prevention structure to multi-layered material in future was presented.

Optimization of Multilayered Foam-panel Sequence for Sound Transmission Loss Maximization (전달손실 최대화를 위한 다층 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1262-1269
    • /
    • 2008
  • Though multilayered foam-panel structures have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain an optimal sequence of multilayered foam-panel structure yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem fur a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as interpolated functions of design variable. The designed sequences of panel-poroelastic multilayer were shown to be significantly affected by the target frequencies; more panels were obtained at higher target frequency. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

Design of Multi-Input Multi-Output Positive Position feedback Controller based on Block-Inverse Technique (블록 역행렬 기법에 의한 다중입출력 양변위 되먹임제어기의 설계)

  • Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.508-514
    • /
    • 2005
  • This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multi input and multi output positive position feedback controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multi-input multi-output positive position feedback controller based on the block inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multi-input multi-output positive position feedback controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments..

  • PDF

Design of Multi-input Multi-output Positive Position Feedback Controller Based on Block-inverse Technique (블록 역행렬 기법에 의한 다중입출력 양변위 되먹임제어기의 설계)

  • Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1037-1044
    • /
    • 2005
  • This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multi-input and multi-output positive position feedback controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multi-input multi-output positive position feedback controller based on the block-inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multi-input multi-output positive position feedback controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments.

A Novel Multi-Level Type Sustaining Driver for AC Plasma Display Panel (새로운 방식의 멀티레벨 AC PDP 구동장치)

  • Jung Woo-Chang;Kang Kyung-Woo;Yoo Jong-Gul;Ko Jong-Sun;Hong Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.425-429
    • /
    • 2004
  • A new multi-level type energy recovery sustaining driver for AC PDP(Plasma Display Panel) is proposed in this paper. The multi-level driver has been developed to reduce the voltage stress on switching elements. Comparing the proposed driver with the conventional multi-level driver, 4 switching elements, 4 diodes, and two auxiliary capacitors are eliminated in the viewpoint of circuit structure. Moreover, the voltage stress on switching elements is more reduced and the sustain period is extended. To verify the validity of the proposed energy recovery circuit, computer simulations using PSpice program are carried out.

  • PDF