• Title/Summary/Keyword: Multi-objectives

Search Result 783, Processing Time 0.029 seconds

Auxiliary domain method for solving multi-objective dynamic reliability problems for nonlinear structures

  • Katafygiotis, Lambros;Moan, Torgeir;Cheungt, Sai Hung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.347-363
    • /
    • 2007
  • A novel methodology, referred to as Auxiliary Domain Method (ADM), allowing for a very efficient solution of nonlinear reliability problems is presented. The target nonlinear failure domain is first populated by samples generated with the help of a Markov Chain. Based on these samples an auxiliary failure domain (AFD), corresponding to an auxiliary reliability problem, is introduced. The criteria for selecting the AFD are discussed. The emphasis in this paper is on the selection of the auxiliary linear failure domain in the case where the original nonlinear reliability problem involves multiple objectives rather than a single objective. Each reliability objective is assumed to correspond to a particular response quantity not exceeding a corresponding threshold. Once the AFD has been specified the method proceeds with a modified subset simulation procedure where the first step involves the direct simulation of samples in the AFD, rather than standard Monte Carlo simulation as required in standard subset simulation. While the method is applicable to general nonlinear reliability problems herein the focus is on the calculation of the probability of failure of nonlinear dynamical systems subjected to Gaussian random excitations. The method is demonstrated through such a numerical example involving two reliability objectives and a very large number of random variables. It is found that ADM is very efficient and offers drastic improvements over standard subset simulation, especially when one deals with low probability failure events.

Development of Health Communication Strategies for Health Behavior Change: Application of Social Ecological Models to Smoking Cessation Intervention (건강행동 변화를 위한 보건 커뮤니케이션 전략 개발: 금연을 위한 생태학적 접근전략의 적용)

  • Kim, Hye-Kyeong
    • Korean Journal of Health Education and Promotion
    • /
    • v.27 no.4
    • /
    • pp.177-188
    • /
    • 2010
  • Objectives: The aim of this study was to examine factors related to smoking behavior, and to develop multilevel communication strategies for smoking cessation. Methods: This paper reviewed theories and empirical findings with currents ecological models to develop communication strategies. Theory comparison was also performed to identify important mediators in the process of smoking cessation. Results: Factors that have been identified to influence smoking behavior ranges from individual perception, attitudes and self efficacy toward smoking to organizational norms, regulations, community capacity, media advocacy and public smoking regulation policy. In order to address these multi-level determinants of smoking behavior, objectives and strategies for smoking cessation intervention were developed utilizing ecological perspectives to cover intrapersonal, interpersonal(mainly family member and peers), organizational and community/public policy level factors. Conclusion: Multilevel approaches have advanced the existing knowledge on determinants of health behaviors. New direction of research focusing on testing multilevel intervention approaches should be expanded to inform the efficacy of applying social ecological models to health behavior change process.

Location of pressure sensing holes in MPA flowmeter and discharge coefficients (MPA 유량계 압력감지공의 위치와 유출계수)

  • Kim, Raymond K.;Choi, Sung Kil
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.160-165
    • /
    • 2004
  • MPA (Multi-Point Averaging) flow element is a new type of differential pressure (DP) flow-sensing device that was developed by Seojin Instech to improve the operating characteristics of the conventional Averaging Pilot Tube (APT) flow elements. Operating characteristics of a flowmeter in general can be defined in terms of measurement accuracy and range. Improvement of accuracy and expanding the range of flow measurement were the two main objectives of the development. To achieve these dual objectives several upstream and downstream pressure-sensing holes were placed in MPA flow element. During the course of the development it was found that certain arrangements of the pressure-sensing holes improved measurement accuracy but did not expand operating flow range of Averaging Pilot Tubes. Development tests were performed with water between Reynolds number of 50,000 and 1,000,000 in the four-inch test line at the Alden Research Laboratory, U.S.A. Purpose of this paper is to present the relationship between the various locations of the pressure-sensing holes and the performance characteristics of MPA flow element. Furthermore, the operating characteristics of the best performing MPA are compared with those of typical orifice and APT.

  • PDF

Surrogate Objective based Search Heuristics to Minimize the Number of Tardy Jobs for Multi-Stage Hybrid Flow Shop Scheduling (다 단계 혼합흐름공정 일정계획에서 납기지연 작업 수의 최소화를 위한 대체 목적함수 기반 탐색기법)

  • Choi, Hyun-Seon;Kim, Hyung-Won;Lee, Dong-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.4
    • /
    • pp.257-265
    • /
    • 2009
  • This paper considers the hybrid flow shop scheduling problem for the objective of minimizing the number of tardy jobs. In hybrid flow shops, each job is processed through multiple production stages in series, each of which has multiple identical parallel machines. The problem is to determine the allocation of jobs to the parallel machines at each stage as well as the sequence of the jobs assigned to each machine. Due to the complexity of the problem, we suggest search heuristics, tabu search and simulated annealing algorithms with a new method to generate neighborhood solutions. In particular, to evaluate and select neighborhood solutions, three surrogate objectives are additionally suggested because not much difference in the number of tardy jobs can be found among the neighborhoods. To test the performances of the surrogate objective based search heuristics, computational experiments were performed on a number of test instances and the results show that the surrogate objective based search heuristics were better than the original ones. Also, they gave the optimal solutions for most small-size test instances.

Comparative Analysis of Optimization Algorithms and the Effects of Coupling Hedging Rules in Reservoir Operations

  • Kim, Gi Joo;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.206-206
    • /
    • 2021
  • The necessity for appropriate management of water resources infrastructures such as reservoirs, levees, and dikes is increasing due to unexpected hydro-climate irregularities and rising water demands. To meet this need, past studies have focused on advancing theoretical optimization algorithms such as nonlinear programming, dynamic programming (DP), and genetic programming. Yet, the optimally derived theoretical solutions are limited to be directly implemented in making release decisions in the real-world systems for a variety of reasons. This study first aims to comparatively analyze the two prominent optimization methods, DP and evolutionary multi-objective direct policy search (EMODPS), under historical inflow series using K-fold cross validation. A total of six optimization models are formed each with a specific formulation. Then, one of the optimization models was coupled with the actual zone-based hedging rule that has been adopted in practice. The proposed methodology was applied to Boryeong Dam located in South Korea with conflicting objectives between supply and demand. As a result, the EMODPS models demonstrated a better performance than the DP models in terms of proximity to the ideal. Moreover, the incorporation of the real-world policy with the optimal solutions improved in all indices in terms of the supply side, while widening the range of the trade-off between frequency and magnitude measured in the sides of demand. The results from this study once again highlight the necessity of closing the gap between the theoretical solutions with the real-world implementable policies.

  • PDF

The impact of household types and social relationships on depression : based on the comparison between single-person households and multi-person households (가구형태와 사회적 관계의 객관적·주관적 측면이 우울에 미치는 영향 : 1인 가구와 다인 가구의 비교를 중심으로)

  • Choi, Yu Jung;Lee, Myoung-Jin;Choi, SetByol
    • Journal of Family Relations
    • /
    • v.21 no.2
    • /
    • pp.25-51
    • /
    • 2016
  • Objectives: This research started with the attempt to comprehend the relationship between household types and psychological stability by linking single-person households to the emotional index "depression." Method: For this purpose, we first compare to see if there is a difference in socio-demographic variables, social relationships, the degree of depression between single households and multi-person households, and to comprehend the relative influence that household types have on depression by taking other factors under consideration. Results: Then based on the results, we compare and analyze the factors that affect the degree of depression on single-person households and multi-person households, respectively. To summarize the results, first of all, residents in single-person households are somewhat older but show lower level of income, education, and health condition compared to peers inmulti-person households. They also had a consistently high level not only in the frequency of contact and emotional connection with families, relatives, and friends, but also in the degree of depression when compared to multi-person households. Secondly, for depression, considering the various factors targeting all the households, the following had a strong influence in the order of "health condition compared to peers," "emotional connection with family," "household types," "emotional connection with colleagues," "frequency of contact with neighbors," "gender," and "age."The degree of depression increases in the following conditions: if the health condition is worse, lower emotional connection with family, single-person household, lower emotional connection with colleagues, lower the frequency of contact with neighbors, female, and older the age. Thirdly, comparing the factors that affect depression by dividing single-person households and multi-person households, "health condition compared to peers" and "emotional connection with family" had the largest effect in common, respectively. In cases of living alone, regardless of other factors, the degree of depression increases with "health condition compared to peers" and "emotional connection with family." Conclusions: On the contrary, in multi-person households, "health condition compared to peers," "emotional connection with family," "emotional connection with colleagues," "income," and "gender" are important.

A Study for the Reliability Based Design Optimization of the Automobile Suspension Part (자동차 현가장치 부품에 대한 신뢰성 기반 최적설계에 관한 연구)

  • 이종홍;유정훈;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2004
  • The automobile suspension system is composed of parts that affect performances of a vehicle such as ride quality, handling characteristics, straight performance and steering effort, etc. Moreover, by using the finite element analysis the cost for the initial design step can be decreased. In the design of a suspension system, usually system vibration and structural rigidity must be considered simultaneously to satisfy dynamic and static requirements simultaneously. In this paper, we consider the weight reduction and the increase of the first eigen-frequency of a suspension part, the upper control arm, especially using topology optimization and size optimization. Firstly, we obtain the initial design to maximize the first eigen-frequency using topology optimization. Then, we apply the multi-objective parameter optimization method to satisfy both the weight reduction and the increase of the first eigen-frequency. The design variables are varying during the optimization process for the multi-objective. Therefore, we can obtain the deterministic values of the design variables not only to satisfy the terms of variation limits but also to optimize the two design objectives at the same time. Finally, we have executed reliability based optimal design on the upper control arm using the Monte-Carlo method with importance sampling method for the optimal design result with 98% reliability.

Multi-Objective Optimization of a Fan Blade Using NSGA-II (NSGA-II 를 통한 송풍기 블레이드의 다중목적함수 최적화)

  • Lee, Ki-Sang;Kim, Kwang-Yong;Samad, Abdus
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2690-2695
    • /
    • 2007
  • This work presents numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis. Reynolds-averaged Navier-Stokes (RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

  • PDF

Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path

  • Tubaldi, E.;Barbato, M.;Dall'Asta, A.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.21-41
    • /
    • 2010
  • Multi-span steel-concrete composite (SCC) bridges are very sensitive to earthquake loading. Extensive damage may occur not only in the substructures (piers), which are expected to yield, but also in the other components (e.g., deck, abutments) involved in carrying the seismic loads. Current seismic codes allow the design of regular bridges by means of linear elastic analysis based on inelastic design spectra. In bridges with superstructure transverse motion restrained at the abutments, a dual load path behavior is observed. The sequential yielding of the piers can lead to a substantial change in the stiffness distribution. Thus, force distributions and displacement demand can significantly differ from linear elastic analysis predictions. The objectives of this study are assessing the influence of piers-deck stiffness ratio and of soil-structure interaction effects on the seismic behavior of continuous SCC bridges with dual load path, and evaluating the suitability of linear elastic analysis in predicting the actual seismic behavior of these bridges. Parametric analysis results are presented and discussed for a common bridge typology. The response dependence on the parameters is studied by nonlinear multi-record incremental dynamic analysis (IDA). Comparisons are made with linear time history analysis results. The results presented suggest that simplified linear elastic analysis based on inelastic design spectra could produce very inaccurate estimates of the structural behavior of SCC bridges with dual load path.

Design of Fuzzy Controller using Multi-objective Genetic Algorithm (다목적 유전자 알고리즘을 이용한 퍼지제어기의 설계)

  • Kim Hyun-Su;Roschke P. N.;Lee Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.209-216
    • /
    • 2005
  • The controller that can control the smart base isolation system consisting of M damper and friction pendulum systems(FPS) is developed in this study. A fuzzy logic controller (FLC) is used to modulate the M damper force because the FLC has an inherent robustness and ability to handle non-linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the FLC. When earthquake excitations are applied to the structures equipped with smart base isolation system, the relative displacement at the isolation level as well as the acceleration of the structure should be regulated under appropriate level. Thus, NSGA-II(Non-dominated Sorting Genetic Algorithm) is employed in this study as a multi-objective genetic algorithm to meet more than two control objectives, simultaneously. NSGA-II is used to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses to several historical earthquakes. It has been shown that the proposed method can efficiently find Pareto optimal sets that can reduce both structural acceleration and base drift from numerical studies.

  • PDF